Publications by authors named "Juliane Melchert"

The hormone Erythroferrone (ERFE) is a member of the C1q/TNF-related protein family that regulates iron homeostasis through the suppression of hamp. In a gain of function screen in Xenopus embryos, we identified ERFE as a potent secondary axis-inducing agent. Experiments in Xenopus embryos and ectodermal explants revealed that ERFE functions as a selective inhibitor of the BMP pathway and the conserved C1q domain is not required for this activity.

View Article and Find Full Text PDF

Canonical Wnt signaling plays a dominant role in the development of the neural crest (NC), a highly migratory cell population that generates a vast array of cell types. Canonical Wnt signaling is required for NC induction as well as differentiation, however its role in NC migration remains largely unknown. Analyzing nuclear localization of β-catenin as readout for canonical Wnt activity, we detect nuclear β-catenin in premigratory but not migratory Xenopus NC cells suggesting that canonical Wnt activity has to decrease to basal levels to enable NC migration.

View Article and Find Full Text PDF

The transition from passive to active migration of primordial germ cells in Xenopus embryos correlates with a reduction in overall adhesion to surrounding endodermal cells as well as with reduced E-cadherin expression. Single cell force spectroscopy, in which cells are brought into brief contact with a gold surface functionalized with E-cadherin constructs, allows for a quantitative estimate of functional E-cadherin molecules on the cell surface. The adhesion force between migratory PGCs and the cadherin-coated surface was almost identical to cells where E-cadherin was knocked down by morpholino oligonucleotides (180 pN).

View Article and Find Full Text PDF

Canonical Wnt signalling is known to be involved in the regulation of differentiation and proliferation in the context of endodermal organogenesis. Wnt mediated beta-catenin activation is understood to be modulated by secreted Frizzled-related proteins, such as XsFRP5, which is dynamically expressed in the prospective liver/ventral pancreatic precursor cells during late neurula stages, becoming liver specific at tailbud stages and shifting to the posterior stomach/anterior duodenum territory during tadpole stages of Xenopus embryogenesis. These expression characteristics prompted us to analyse the function of XsFRP5 in the context of endodermal organogenesis.

View Article and Find Full Text PDF