Adipocyte triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are intracellular lipases that mobilize triglycerides, the main energy source in mammals. Deletion of genes encoding ATGL (Pnpla2) or HSL (Lipe) in mice results in striking phenotypic differences, suggesting distinct roles for these lipases. The goal of the present study was to identify the biological processes that are modulated in the metabolic tissues of ATGL- and HSL-deficient mice.
View Article and Find Full Text PDFAdipose triglyceride lipase (ATGL) was recently identified as an important triacylglycerol (TG) hydrolase promoting the catabolism of stored fat in adipose and nonadipose tissues. We now demonstrate that efficient ATGL enzyme activity requires activation by CGI-58. Mutations in the human CGI-58 gene are associated with Chanarin-Dorfman Syndrome (CDS), a rare genetic disease where TG accumulates excessively in multiple tissues.
View Article and Find Full Text PDFHydrolysis of triacylglycerols and cholesteryl esters is a key event in energy homeostasis of animals. However, many lipolytic activities still await their molecular identification. Here we report on a novel tool for concomitant analysis of lipases in complex proteomes.
View Article and Find Full Text PDFPurpose Of Review: The lipolytic catabolism of stored fat in adipose tissue supplies tissues with fatty acids as metabolites and energy substrates during times of food deprivation. This review focuses on the function of recently discovered enzymes in adipose tissue lipolysis and fatty acid mobilization.
Recent Findings: The characterization of hormone-sensitive lipase-deficient mice provided compelling evidence that hormone-sensitive lipase is not uniquely responsible for the hydrolysis of triacylglycerols and diacylglycerols of stored fat.
Lipoprotein lipase (LPL) is thought to be the only enzyme responsible for the catabolism of triglycerides (TGs) associated with TG-rich lipoproteins in adipose tissue (AT). However, LPL deficiency in humans and induced mutant mice is not associated with decreased fat mass. We investigated whether endothelial lipase (EL), a recently discovered phospholipase, might represent an alternative mechanism for the uptake of phospholipid-derived fatty acids in murine lipoprotein-deficient AT.
View Article and Find Full Text PDFMobilization of fatty acids from triglyceride stores in adipose tissue requires lipolytic enzymes. Dysfunctional lipolysis affects energy homeostasis and may contribute to the pathogenesis of obesity and insulin resistance. Until now, hormone-sensitive lipase (HSL) was the only enzyme known to hydrolyze triglycerides in mammalian adipose tissue.
View Article and Find Full Text PDFIt has been observed previously that hormone-sensitive lipase-deficient (HSL-ko) mice have reduced white adipose tissue (WAT) stores compared to control mice. These findings contradict the expectation that the decreased lipolytic activity in WAT of HSL-ko mice would cause accumulation of triglycerides (TGs) in that tissue. Here we demonstrate that the cellular TG synthesis in HSL-deficient WAT is markedly reduced due to downregulation of the enzymatic activities of glycerophosphate acyltransferase, dihydroxyacetonphosphate acyltransferase, lysophosphatidate acyltransferase, and diacylglycerol acyltransferase.
View Article and Find Full Text PDFWe previously reported that endothelial-derived lipase (EDL) efficiently hydrolyses high-density-lipoprotein-derived phosphatidycholine (HDL-PC). In the present study, we assessed the ability of EDL to supply HepG2 cells with non-esterified fatty acids (NEFA) liberated from HDL-phospholipids. For this purpose, HepG2 cells infected with adenovirus encoding human EDL (EDL-Ad), or with control beta-galactosidase-expressing adenovirus (LacZ-Ad), were incubated with (14)C-HDL-PC.
View Article and Find Full Text PDFEndothelial cell-derived lipase (EDL) is a new member of the lipase gene family with high sequence homology with lipoprotein lipase (LPL). EDL is a phospholipase with very little triacylglycerol lipase activity. To investigate the effects of EDL on binding and uptake of high-density lipoprotein (HDL), as well as on the selective uptake of HDL-derived cholesterol esters (CEs), HepG2 cells were infected with adenovirus coding for EDL.
View Article and Find Full Text PDFHormone-sensitive lipase (HSL) is believed to play an important role in the mobilization of fatty acids from triglycerides (TG), diglycerides, and cholesteryl esters in various tissues. Because HSL-mediated lipolysis of TG in adipose tissue (AT) directly feeds non-esterified fatty acids (NEFA) into the vascular system, the enzyme is expected to affect many metabolic processes including the metabolism of plasma lipids and lipoproteins. In the present study we examined these metabolic changes in induced mutant mouse lines that lack HSL expression (HSL-ko mice).
View Article and Find Full Text PDF