Publications by authors named "Juliane Filser"

Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised.

View Article and Find Full Text PDF

Transformation, dissolution, and sorption of copper oxide nanoparticles (CuO-NP) play an important role in freshwater ecosystems. We present the first mesocosm experiment on the fate of CuO-NP and the dynamics of the zooplankton community over a period of 12 months. Increasingly low (0.

View Article and Find Full Text PDF

Membrane filtration has been increasingly used to separate dissolved metal ions from dispersed particles, commonly using ultrafiltration membranes, for example, polyethersulfone (PES) membranes with a molecular weight cut-off of 3 kDa. The disadvantage of this technique is an undesired retention of ions, resulting from Coulomb interactions with sulfonic acid groups of the membrane. Therefore, such a membrane acts similar to a cation exchanger column.

View Article and Find Full Text PDF

Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown.

View Article and Find Full Text PDF

Soil invertebrates (i.e., soil fauna) are important drivers of many key processes in soils including soil aggregate formation, water retention, and soil organic matter transformation.

View Article and Find Full Text PDF

Copper oxide nanoparticles (CuO-NPs) can be applied as an efficient alternative to conventional Cu in agriculture. Negative effects of CuO-NPs on soil organisms were found, but only in clay-rich loamy soils. It is hypothesized that clay-NP interactions are the origin of the observed toxic effects.

View Article and Find Full Text PDF

There is an increasing interest in algae-based raw materials for medical, cosmetic or nutraceutical applications. Additionally, the high diversity of physicochemical properties of the different algal metabolites proposes these substances from microalgae as possible additives in the chemical industry. Among the wide range of natural products from red microalgae, research has mainly focused on extracellular polymers for additive use, while this study also considers the cellular components.

View Article and Find Full Text PDF

Soil samples from several European countries were scanned using medical computer tomography (CT) device and are now available as CT images. The analysis of these samples was carried out using deep learning methods. For this purpose, a VGG16 network was trained with the CT images (X).

View Article and Find Full Text PDF

Nanoscale silver (n-Ag) including silver nanoparticles (Ag-NPs), silver chloride nanoparticles (AgCl-NPs), and silver sulfide nanoparticles (AgS-NPs) and their corresponding ionic counterpart, namely, dissolved Ag, may coexist in soils. X-ray absorption near edge spectroscopy (XANES) is used to elucidate the speciation of n-Ag in soils, whereas it possesses drawbacks like high costs, rare availability of the instrument, and providing semiquantitative data. We developed a new method for the identification and speciation of n-Ag in soils and sediments based on a sequential extraction technique coupled with inductively coupled plasma optical emission spectrometry.

View Article and Find Full Text PDF

Copper oxide nanoparticles (CuO-NP) are used as an efficient alternative to conventional Cu in agriculture and might end up in soils. They show a high toxicity towards cells and microorganisms, but only low toxicity towards soil invertebrates. However, most existing soil ecotoxicological studies were conducted in a sandy reference soil and at test concentrations ≥100 mg Cu/kg soil.

View Article and Find Full Text PDF

Nanoscale zinc oxide (n-ZnO) with different morphology and sizes has been used in personal care products due to their antibacterial properties, resulting in discharge of n-ZnO into the environment with potential toxic effect to ecological systems. Sulfidation is one of pathways of transformation of n-ZnO, but a very limited information on the conversion of n-ZnO under sulfidic environment with special morphology such as sea urchin-like zinc oxide nanospheres (ZnO-NSs) is available to know the potential environmental risks of n-ZnO. Herein, sea urchin-like ZnO-NSs with an average size of 78 nm were synthesized and adopted as the model n-ZnO of special morphology.

View Article and Find Full Text PDF

Nanopesticides are being introduced in agriculture, and the associated environmental risks and benefits must be carefully assessed before their widespread agricultural applications. We investigated the impacts of a commercial Cu(OH) nanopesticide formulation (NPF) at different agricultural application doses (e.g.

View Article and Find Full Text PDF

Cu(OH) nanopesticides and organic insecticides are continuously applied to soil at a temporal interval, while knowledge about the impact of Cu(OH) nanopesticides on organic insecticides degradation is currently scarce, resulting in poorly comprehensive evaluation of the potential environmental risks of Cu(OH) nanopesticides. Herein, a commercial Cu(OH) nanopesticide formulation (NPF), the active ingredient of NPF (AI-NPF), the prepared Cu(OH) nanotubes (NT) with comparable morphology and size to AI-NPF, and CuSO were respectively applied to soil at normal doses (0.5, 5 and 50 mg/kg), followed by an application of neonicotinoid thiacloprid after an interval of 21 d, showing that NPF at doses of 5 and 50 mg/kg significantly (p < 0.

View Article and Find Full Text PDF

Total organic carbon (TOC) contents in agricultural soil are presently receiving increased attention, not only because of their relationship to soil fertility, but also due to the sequestration of organic carbon in soil to reduce carbon dioxide emissions. In this research, the spatial patterns of TOC and its relationship with pH at the European scale were studied using hot spot analysis based on the agricultural soil results of the Geochemical Mapping of Agricultural Soil (GEMAS) project. The hot and cold spot maps revealed the overall spatial patterns showing a negative correlation between TOC contents and pH values in European agricultural soil.

View Article and Find Full Text PDF

Fate, bioavailability and toxicity of silver nanoparticles (AgNP) are largely affected by soil properties. Here we focused on how these processes are connected in simulated soil pore water. OECD soil components (sand, kaolin clay, peat) were covered with NM-300K-, AgNO- and NM-300K dispersant-contaminated water, and Folsomia candida were exposed on the water surface.

View Article and Find Full Text PDF
Article Synopsis
  • The "Promoting Responsible Research and Innovation" (RRI) initiative, part of the EU Horizon 2020 program, aligns research with societal values through public engagement, open access, and ethics, involving 6 European and 6 international institutions.
  • The STARBIOS2 project aims to foster structural change in RRI at participating institutions by implementing action plans and creating guidelines for biosciences research.
  • The project is structured around 6 core and 5 supporting work packages, focusing on institutional changes, technical assistance, and monitoring, and will run for four years with funding from Horizon 2020.
View Article and Find Full Text PDF

Silver nanoparticles (AgNP) are increasingly emitted to the environment due to a rise in application in various products; therefore, assessment of their potential risks for biota is important. In this study the effects of AgNP at environmentally relevant concentrations (0.6-375 µg kg soil) on the soil invertebrate in OECD (Organisation for Economic Co-operation and Development) soil was examined at different soil water contents.

View Article and Find Full Text PDF

Nanoparticles serve various industrial and domestic purposes which is reflected in their steadily increasing production volume. This economic success comes along with their presence in the environment and the risk of potentially adverse effects in natural systems. Over the last decade, substantial progress regarding the understanding of sources, fate, and effects of nanoparticles has been made.

View Article and Find Full Text PDF

The study aims to establish a preliminary environmental assessment of a quinaldine-based LOHC system composed of hydrogen-lean, partially hydrogenated, and fully hydrogenated forms. We examined their toxicity toward the soil bacteria Arthrobacter globiformis and the Collembola Folsomia candida in two exposure scenarios, with and without soil, to address differences in the bioavailability of the compounds. In both scenarios, no or only slight toxicity toward soil bacteria was observed at the highest test concentration (EC > 3397 μmol L and >4892 μmol kg dry weight soil).

View Article and Find Full Text PDF

The relation between test conditions such as medium composition or pH on silver nanoparticle (AgNP) behavior and its link to toxicity is one of the major topics in nanoecotoxicological research in the last years. In addition, the adaptation of the ecotoxicological standard tests for nanomaterials is intensely discussed to increase comparability and reliability of results. Due to the limitation of test material production volumes and the need for high-throughput screening, miniaturization has been proposed for several test designs.

View Article and Find Full Text PDF

While differences in silver nanoparticle (AgNP) colloidal stability, surface potential, or acute aquatic toxicity for differently stabilized AgNP have often been reported, these have rarely been studied in long-term ecotoxicity tests. In the current study, we investigated the chronic toxicity of AgNP to Daphnia magna over a 21-day period with two different stabilizers (citrate and detergent), representative for charge and sterical stabilizers, respectively. This was coupled with a series of short-term experiments, such as mass balance and uptake/depuration testing, to investigate the behavior of both types of AgNP during a typical media exchange period in the D.

View Article and Find Full Text PDF

Recent studies suggest that the ecotoxicity of engineered nanoparticles (ENPs) is dependent upon the treatment of ENPs in suspensions (e.g. sonication or use of solvents) and on the mode of exposure to test organisms.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how different coatings on iron oxide nanoparticles (IONP) affect their stability and toxicity to the water flea Daphnia magna.
  • Four types of coatings were used: ascorbate, citrate, dextran, and polyvinylpyrrolidone, each impacting the nanoparticles' stability and their interactions with the environment.
  • The findings revealed that some coatings, like ascorbate and dextran, caused significant immobilization effects on the Daphnia, while polyvinylpyrrolidone showed no negative effects despite high ingestion rates, highlighting that toxicity is linked more to colloidal stability and ion release than to hydrodynamic size.
View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are widely applied for their antibacterial activity. Their increasing use in consumer products implies that they will find their way into the environment via wastewater-treatment plants. The aim of the present study was to compare the ecotoxicological impact of 2 differently designed AgNPs using the solid contact test for the bacterial strain Arthrobacter globiformis.

View Article and Find Full Text PDF