Publications by authors named "Juliana Laguna"

Lactobacillus delbrueckii CIDCA 133 is a promising health-promoting bacterium shown to alleviate intestinal inflammation. However, the specific bacterial components responsible for these effects remain largely unknown. Here, we demonstrated that consuming extractable proteins from the CIDCA 133 strain effectively relieved acute ulcerative colitis in mice.

View Article and Find Full Text PDF

Lactobacillus delbrueckii, a widely used lactic acid bacterium in the food industry, has been studied for its probiotic properties and reservoir of antibiotic-resistant genes, raising safety concerns for probiotic formulations and fermented products. This review consolidates findings from 60 articles published between 2012 and 2023, focusing on the global antibiotic resistance profile and associated genetic factors in L. delbrueckii strains.

View Article and Find Full Text PDF

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored.

View Article and Find Full Text PDF

Introduction And Objective: p62 is a human multifunctional adaptor protein involved in key cellular processes such as tissue homeostasis, inflammation, and cancer. It acts as a negative regulator of inflammasome complexes. It may thus be considered a good candidate for therapeutic use in inflammatory bowel diseases (IBD), such as colitis.

View Article and Find Full Text PDF

This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described.

View Article and Find Full Text PDF

Intestinal mucositis is a commonly reported side effect in oncology patients undergoing chemotherapy and radiotherapy. Probiotics, prebiotics, and synbiotics have been investigated as alternative therapeutic approaches against intestinal mucositis due to their well-known anti-inflammatory properties and health benefits to the host. Previous studies showed that the potential probiotic Lactobacillus delbrueckii CIDCA 133 and the prebiotic Fructooligosaccharides (FOS) alleviated the 5-Fluorouracil (5-FU) chemotherapy-induced intestinal mucosa damage.

View Article and Find Full Text PDF

Mucositis is an inflammation of the gastrointestinal mucosa that debilitate the quality of life of patients undergoing chemotherapy treatments. In this context, antineoplastic drugs, such as 5-fluorouracil, provokes ulcerations in the intestinal mucosa that lead to the secretion of pro-inflammatory cytokines by activating the NF-κB pathway. Alternative approaches to treat the disease using probiotic strains show promising results, and thereafter, treatments that target the site of inflammation could be further explored.

View Article and Find Full Text PDF

Microbiologically influenced corrosion (MIC) or biocorrosion is a complex biological and physicochemical process, Strategies for monitoring MIC are frequently based on microbial cultivation methods, while microbiological molecular methods (MMM) are not well-established in the oil industry in Brazil. Thus, there is a high demand for the development of effective protocols for monitoring biocorrosion with MMM. The main aim of our study was to analyze the physico-chemi- cal features of microbial communities occurring in produced water (PW) and in enrichment cultures in oil pipelines of the petroleum industry.

View Article and Find Full Text PDF

Excessive adipose tissue (AT) lipolysis around parturition in dairy cows is associated with impaired AT insulin sensitivity and increased incidence of metabolic diseases. Supplementing cows with oleic acid (OA) reduces circulating biomarkers of lipolysis and improves energy balance. Nevertheless, it is unclear if OA alters lipid trafficking in AT.

View Article and Find Full Text PDF

Target delivery of therapeutic agents with anti-inflammatory properties using probiotics as delivery and recombinant protein expression vehicles is a promising approach for the prevention and treatment of many diseases, such as cancer and intestinal immune disorders. Lactococcus lactis, a Lactic Acid Bacteria (LAB) widely used in the dairy industry, is one of the most important microorganisms with GRAS status for human consumption, for which biotechnological tools have already been developed to express and deliver recombinant biomolecules with anti-inflammatory properties. Cytokines, for  example, are immune system communication molecules present at virtually all levels of the immune response.

View Article and Find Full Text PDF

Intestinal mucositis is a commonly reported side effect in oncology practice. Probiotics are considered an excellent alternative therapeutic approach to this debilitating condition; however, there are safety questions regarding the viable consumption of probiotics in clinical practice due to the risks of systemic infections, especially in immune-compromised patients. The use of heat-killed or cell-free supernatants derived from probiotic strains has been evaluated to minimize these adverse effects.

View Article and Find Full Text PDF

Intestinal mucositis promoted by the use of anticancer drugs is characterized by ulcerative inflammation of the intestinal mucosa, a debilitating side effect in cancer patients undergoing treatment. Probiotics are a potential therapeutic option to alleviate intestinal mucositis due to their effects on epithelial barrier integrity and anti-inflammatory modulation. This study investigated the health-promoting impact of CIDCA 133 in modulating inflammatory and epithelial barrier markers to protect the intestinal mucosa from 5-fluorouracil-induced epithelial damage.

View Article and Find Full Text PDF

Background: Periparturient cows release fatty acid reserves from adipose tissue (AT) through lipolysis in response to the negative energy balance induced by physiological changes related to parturition and the onset of lactation. However, lipolysis causes inflammation and structural remodeling in AT that in excess predisposes cows to disease. The objective of this study was to determine the effects of the periparturient period on the transcriptomic profile of AT using NGS RNAseq.

View Article and Find Full Text PDF

The objective of this study was to evaluate the effect of the physical form of starter and inclusion of hay in the diet of preweaning dairy calves on performance, digestibility, ruminal development, and mRNA expression of genes involved in ruminal metabolism. Holstein × Gyr crossbred male calves (n = 38 1day old) were assigned to 3 treatments for 9 weeks: Control (n = 13; pellet starter with 4 mm diameter and 18 mm length and 4% steam-flaked corn), Ground (n = 12; same starter of the control but ground pass through a 4.0 mm sieve), or Ground plus 5% chopped Tifton hay GH (n = 13).

View Article and Find Full Text PDF

Oxidized linoleic acid metabolites (OXLAM) are products of adipocyte lipolysis with the potential to modulate adipose tissue (AT) lipid metabolism and inflammation. In periparturient cows, linoleic acid is preferentially mobilized from AT during lipolysis by hormone-sensitive lipase (HSL) compared with other polyunsaturated fatty acids. Enzymatic and nonenzymatic reactions generate OXLAM from linoleic acid.

View Article and Find Full Text PDF