Publications by authors named "Juliana De Souza Reboucas"

Nanoformulations in vaccinology provide antigen stability and enhanced immunogenicity, in addition to providing targeted delivery and controlled release. In the last years, much research has been focused on vaccine development using virus-like particles, liposomes, emulsions, polymeric, lipid, and inorganic nanoparticles. Importantly, nanoparticle interactions with innate and adaptive immune systems must be clearly understood to guide the rational development of nanovaccines.

View Article and Find Full Text PDF

Despite the global burden of viral diseases transmitted by Aedes aegypti, there is a lack of effective means of prevention and treatment. Strategies for vector control include chemical and biological approaches such as organophosphates and Bacillus thuringiensis var. israelensis (Bti), among others.

View Article and Find Full Text PDF

Shrimp is among the most sensitizing food allergens and has been associated with many anaphylaxis reactions. However, there is still a shortage of studies that enable a systematic understanding of this disease and the investigation of new therapeutic approaches. This study aimed to develop a new experimental model of shrimp allergy that could enable the evaluation of new prophylactic treatments.

View Article and Find Full Text PDF
Article Synopsis
  • Ivermectin (IVM) is a powerful antiparasitic drug whose effectiveness is limited by low oral bioavailability, prompting the development of new formulations.
  • This study successfully created poly(ε-caprolactone) (PCL) nanocapsules containing IVM, incorporating pumpkin seed oil (PSO) for improved solubility and stability.
  • The optimized nanocapsules showed high encapsulation efficiency, maintained stability over time, and exhibited reduced toxicity alongside enhanced antiparasitic activity against Strongyloides venezuelensis compared to free IVM.
View Article and Find Full Text PDF

Different carrier systems have been investigated for myocardial delivery of biopharmaceuticals for heart disease. Here, we aimed to evaluate the heart retention and tissue response of liposomes intended for cardiac drug delivery. Liposomes were produced by the lipid thin film hydration method followed by sonication.

View Article and Find Full Text PDF

Cutaneous leishmaniasis caused by induces a pronounced Th1 inflammatory response characterized by IFN-γ production. Even in the absence of parasites, lesions result from a severe inflammatory response in which inflammatory cytokines play an important role. Different approaches have been used to evaluate the therapeutic potential of orally administrated heat shock proteins (Hsp).

View Article and Find Full Text PDF

Ivermectin is an FDA-approved broad-spectrum antiparasitic agent with demonstrated antiviral activity against a number of DNA and RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite this promise, the antiviral activity of ivermectin has not been consistently proven in vivo. While ivermectin's activity against SARS-CoV-2 is currently under investigation in patients, insufficient emphasis has been placed on formulation challenges.

View Article and Find Full Text PDF

17-N-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) is an inhibitor of heat shock protein 90 (Hsp90), which has been studied in the treatment of cancer such as leukemia or solid tumors. Alternatively, 17-AAG may represent a promising therapeutic agent against leishmaniasis. However, the delivery of 17-AAG is difficult due to its poor aqueous solubility.

View Article and Find Full Text PDF

Bacterial levan is a fructose homopolymer that offers great potential in biotechnological applications due to biocompatibility, biodegradability and non-toxicity. This biopolymer possesses diverse multifunctional features, which translates into a wide range of applicability, including in industry, consumer products, pharmaceuticals and biomedicine. Extensive research has identified great potential for its exploitation in human health.

View Article and Find Full Text PDF

The current long-term treatment for leishmaniasis causes severe side effects and resistance in some cases. An evaluation of the anti-leishmanial potential of an HSP90-inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), demonstrated its potent effect against spp. and .

View Article and Find Full Text PDF

Cashew nut allergy is the second most commonly reported tree nut allergy. Traditional allergen immunotherapy presents several clinical drawbacks that can be reduced by using nanoparticles-basedallergen-delivery systems, modulating the immune response towards a protective one. In this context, the goal of this work was to assess the potential of poly(anhydride) nanoparticles (NP) for cashew nut oral immunization.

View Article and Find Full Text PDF

Background: Peanut allergy is the most common cause of anaphylaxis and food-related death. However, there is currently no approved immunotherapy treatment. Hence, this warrants the need for relevant and convenient animal models to test for adequate immunotherapies.

View Article and Find Full Text PDF

Myocardial infarction is the most significant manifestation of ischemic heart disease and is associated with high morbidity and mortality. Novel strategies targeting at regenerating the injured myocardium have been investigated, including gene therapy, cell therapy, and the use of growth factors. Growth factor therapy has aroused interest in cardiovascular medicine because of the regeneration mechanisms induced by these biomolecules, including angiogenesis, extracellular matrix remodeling, cardiomyocyte proliferation, stem-cell recruitment, and others.

View Article and Find Full Text PDF

Allergen-specific immunotherapy is based on the administration of allergens with the main disadvantage of inducing an allergic reaction. Within this context, we report the generation of an adjuvant and allergen-delivery system for peanut allergen immunotherapy with reduced IgE induction. Therefore, we prepared and characterized poly(anhydride) nanoparticles loaded with peanut proteins using the solvent displacement method, with some modifications in the manufacturing process.

View Article and Find Full Text PDF

In the last decades, significant progress in research and clinics has been made to offer possible innovative therapeutics for the management of allergic diseases. However, current allergen immunotherapy shows limitations concerning the long-term efficacy and safety due to local side effects and risk of anaphylaxis. Thus, effective and safe vaccines with reduced dose of allergen have been developed using adjuvants.

View Article and Find Full Text PDF