Publications by authors named "Juliana Costa Silva"

Background: Inflammation in the lungs and other vital organs in COVID-19 is characterized by the presence of neutrophils and a high concentration of neutrophil extracellular traps (NETs), which seems to mediate host tissue damage. However, it is not known whether NETs could have virucidal activity against SARS-CoV-2.

Methods: We investigated whether NETs could prevent SARS-CoV-2 replication in neutrophils and epithelial cells and what the consequence of NETs degradation would be in K18-humanized ACE2 transgenic mice infected with SARS-CoV-2.

View Article and Find Full Text PDF

Analysis of differential gene expression from RNA-seq data has become a standard for several research areas. The steps for the computational analysis include many data types and file formats, and a wide variety of computational tools that can be applied alone or together as pipelines. This paper presents a review of the differential expression analysis pipeline, addressing its steps and the respective objectives, the principal methods available in each step, and their properties, therefore introducing an organized overview to this context.

View Article and Find Full Text PDF

Background: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear.

Objectives: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19.

View Article and Find Full Text PDF

The correct identification of differentially expressed genes (DEGs) between specific conditions is a key in the understanding phenotypic variation. High-throughput transcriptome sequencing (RNA-Seq) has become the main option for these studies. Thus, the number of methods and softwares for differential expression analysis from RNA-Seq data also increased rapidly.

View Article and Find Full Text PDF

Endogenous viral elements (EVEs) are the result of heritable horizontal gene transfer from viruses to hosts. In the last years, several EVE integration events were reported in plants by the exponential availability of sequenced genomes. Eucalyptus grandis is a forest tree species with a sequenced genome that is poorly studied in terms of evolution and mobile genetic elements composition.

View Article and Find Full Text PDF

Background: In Eucalyptus genus, studies on genome composition and transposable elements (TEs) are particularly scarce. Nearly half of the recently released Eucalyptus grandis genome is composed by retrotransposons and this data provides an important opportunity to understand TE dynamics in Eucalyptus genome and transcriptome.

Results: We characterized nine families of transcriptionally active LTR retrotransposons from Copia and Gypsy superfamilies in Eucalyptus grandis genome and we depicted genomic distribution and copy number in two Eucalyptus species.

View Article and Find Full Text PDF

Intravascular delivery of cells has been increasingly used in stroke models and clinical trials. We compared the biodistribution and therapeutic effects of bone marrow mononuclear cells (BMMCs) delivered by intra-arterial (IA) or intravenous (IV) injection after cortical ischemia. For the biodistribution analyses, BMMCs were labeled with (99m)Technetium ((99m)Tc).

View Article and Find Full Text PDF