Objective: The endothelium regulates crucial aspects of vascular function, including hemostasis, vasomotor tone, proliferation, immune cell adhesion, and microvascular permeability. Endothelial cells (ECs), especially in arterioles, are pivotal for flow distribution and peripheral resistance regulation. Investigating vascular endothelium physiology, particularly in microvascular ECs, demands precise isolation and culturing techniques.
View Article and Find Full Text PDFExcess consumption of carbohydrates, fat and calories leads to non-alcoholic fatty liver disease (NAFLD) and hepatic insulin resistance; these are major factors in the pathogenesis of type II diabetes. Hormones and catecholamines acting through G-protein coupled receptors (GPCRs) linked to phospholipase C (PLC) and increases in cytosolic Ca ([Ca ] ) regulate many metabolic functions of the liver. In the intact liver, catabolic hormones such as glucagon, catecholamines and vasopressin integrate and synergize to regulate the frequency and extent to which [Ca ] waves propagate across hepatic lobules to control metabolism.
View Article and Find Full Text PDFOligogenic inheritance of autism spectrum disorder (ASD) has been supported by several studies. However, little is known about how the risk variants interact and converge on causative neurobiological pathways. We identified in an ASD proband deleterious compound heterozygous missense variants in the Reelin (RELN) gene, and a de novo splicing variant in the Cav3.
View Article and Find Full Text PDFBackground: Fragile X syndrome, the major cause of inherited intellectual disability among men, is due to deficiency of the synaptic functional regulator FMR1 protein (FMRP), encoded by the FMRP translational regulator 1 (FMR1) gene. FMR1 alternative splicing produces distinct transcripts that may consequently impact FMRP functional roles. In transcripts without exon 14 the translational reading frame is shifted.
View Article and Find Full Text PDFNeurodevelopmental processes of pluripotent cells, such as proliferation and differentiation, are influenced by external natural forces. Despite the presence of biogenic magnetite nanoparticles in the central nervous system and constant exposure to the Earth's magnetic fields and other sources, there is scant knowledge regarding the role of electromagnetic stimuli in neurogenesis. Moreover, emerging applications of electrical and magnetic stimulation to treat neurological disorders emphasize the relevance of understanding the impact and mechanisms behind these stimuli.
View Article and Find Full Text PDFExtracellular agonists linked to inositol-1,4,5-trisphosphate (IP) formation elicit cytosolic Ca oscillations in many cell types, but despite a common signaling pathway, distinct agonist-specific Ca spike patterns are observed. Using qPCR, we show that rat hepatocytes express multiple purinergic P2Y and P2X receptors (R). ADP acting through P2Y1R elicits narrow Ca oscillations, whereas UTP acting through P2Y2R elicits broad Ca oscillations, with composite patterns observed for ATP.
View Article and Find Full Text PDFCalcium (Ca) oscillations in hepatocytes have a wide dynamic range. In particular, recent experimental evidence shows that agonist stimulation of the P2Y family of receptors leads to qualitatively diverse Ca oscillations. We present a new model of Ca oscillations in hepatocytes based on these experiments to investigate the mechanisms controlling P2Y-activated Ca oscillations.
View Article and Find Full Text PDFCalcium, the most versatile second messenger, regulates essential biology including crucial cellular events in embryogenesis. We investigated impacts of calcium channels and purinoceptors on neuronal differentiation of normal mouse embryonic stem cells (ESCs), with outcomes being compared to those of in vitro models of Huntington's disease (HD). Intracellular calcium oscillations tracked via real-time fluorescence and luminescence microscopy revealed a significant correlation between calcium transient activity and rhythmic proneuronal transcription factor expression in ESCs stably expressing ASCL-1 or neurogenin-2 promoters fused to luciferase reporter genes.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is characterized by deficits in communication and social interaction, restricted interests, and stereotyped behavior. Environmental factors, such as prenatal exposure to valproic acid (VPA), may contribute to the increased risk of ASD. Since disturbed functioning of the purinergic signaling system has been associated with the onset of ASD and used as a potential therapeutic target for ASD in both clinical and preclinical studies, we analyzed the effects of suramin, a non-selective purinergic antagonist, on behavioral, molecular and immunological in an animal model of autism induced by prenatal exposure to VPA.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder characterized by decreased dopamine bioavailability in the and the . Taking into account that adenosine-5'-triphosphate (ATP) and its metabolites are intensely released in the 6-hydroxydopamine (6-OHDA) animal model of PD, screening of purinergic receptor gene expression was performed. Effects of pharmacological P2Y6 or P2X7 receptor antagonism were studied in preventing or reversing hemiparkinsonian behavior and dopaminergic deficits in this animal model.
View Article and Find Full Text PDFBone marrow metastasis occurs in approximately 350,000 patients that annually die in the U.S. alone.
View Article and Find Full Text PDFSince proving adenosine triphosphate (ATP) functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD), motor neuron diseases (MND), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's Disease (HD), restless leg syndrome (RLS), and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation.
View Article and Find Full Text PDFAdenine nucleotides through P2Y receptor stimulation are known to control retinal progenitor cell (RPC) proliferation by modulating expression of the p57, a cell cycle regulator. However, the role of Gi protein-coupled P2Y and P2Y receptors also activated by adenine nucleotides in RPC proliferation is still unknown. Gene expression of the purinergic P2Y subtype was detected in rat retina during early postnatal days (P0 to P5), while expression levels of P2Y were low.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2018
Neuropsychiatric disorders involve various pathological mechanisms, resulting in neurodegeneration and brain atrophy. Neurodevelopmental processes have shown to be critical for the progression of those disorders, which are based on genetic and epigenetic mechanisms as well as on extrinsic factors. We review here common mechanisms underlying the comorbidity of Bipolar Disorders and Alzheimer's Disease, such as aberrant neurogenesis and neurotoxicity, reporting current therapeutic approaches.
View Article and Find Full Text PDF