Publications by authors named "Juliana Coronel"

Influenza viruses have been successfully propagated using a variety of animal cell lines in batch, fed-batch, and perfusion culture. For suspension cells, most studies reported on membrane-based cell retention devices typically leading to an accumulation of viruses in the bioreactor in perfusion mode. Aiming at continuous virus harvesting for improved productivities, an inclined settler was evaluated for influenza A virus (IAV) production using the avian suspension cell line AGE1.

View Article and Find Full Text PDF

Process intensification and integration is crucial regarding an ever increasing pressure on manufacturing costs and capacities in biologics manufacturing. For virus production in perfusion mode, membrane-based alternating tangential flow filtration (ATF) and acoustic settler are the commonly described cell retention technologies. While acoustic settlers allow for continuous influenza virus harvesting, the use of commercially available membranes for ATF systems typically results in the accumulation of virus particles in the bioreactor vessel.

View Article and Find Full Text PDF

Increasing the cultivation volume from small to large scale can be a rather complex and challenging process when the method of aeration and mixing is different between scales. Orbitally shaken bioreactors (OSBs) utilize the same hydrodynamic principles that define the success of smaller-scale cultures, which are developed on an orbitally shaken platform, and can simplify scale-up. Here we describe the basic working principles of scale-up in terms of the volumetric oxygen transfer coefficient (ka) and mixing time and how to define these parameters experimentally.

View Article and Find Full Text PDF

Perfusion operation mode remains the preferred platform for production of labile biopharmaceuticals (e.g., blood factors) and is also being increasingly adopted for production of stable products (e.

View Article and Find Full Text PDF

Driven by the concept of plug-and-play cell culture-based viral vaccine production using disposable bioreactors, we evaluated an orbital shaken bioreactor (OSB) for human influenza A virus production at high cell concentration. Therefore, the OSB model SB10-X was coupled to two hollow fiber-based perfusion systems, namely, tangential flow filtration (TFF) and alternating tangential flow filtration (ATF). The AGE1.

View Article and Find Full Text PDF

Seasonal and pandemic influenza respiratory infections are still a major public health issue. Vaccination is the most efficient way to prevent influenza infection. One option to produce influenza vaccines is cell-culture based virus propagation.

View Article and Find Full Text PDF

Purpose: Bone marrow mononuclear cells (BMMCs) have been used with considerable success to improve regeneration and/or functional recovery in animal models of neurologic diseases. Injected into the host, they migrate to the damaged areas and release cytokines and/or trophic factors, which are capable of altering the genetic program of the injured tissue cells. In this study, there was a search for genes with altered expression in a model of optic nerve crush and cell therapy.

View Article and Find Full Text PDF

The central nervous system (CNS) of adult mammals generally does not regenerate, and many studies have attempted to identify factors that could increase neuroprotection and/or axonal outgrowth after CNS lesions. Using the optic nerve crush of rats as a model for CNS injury, we investigated the effect of intravitreal transplantation of syngeneic bone-marrow mononuclear cells (BMMCs) on the survival of retinal ganglion cells (RGC) and on the regeneration of optic axons. Control animals received intravitreal saline injections after lesion.

View Article and Find Full Text PDF