Trypanosoma brucei are protozoan parasites that cause sleeping sickness in humans and nagana in cattle. Inside the mammalian host, a quorum sensing-like mechanism coordinates its differentiation from a slender replicative form into a quiescent stumpy form, limiting growth and activating metabolic pathways that are beneficial to the parasite in the insect host. The post-translational modification of proteins with the Small Ubiquitin-like MOdifier (SUMO) enables dynamic regulation of cellular metabolism.
View Article and Find Full Text PDFIn the context of continuous emergence of SARS-CoV-2 variants of concern (VOCs), one strategy to prevent the severe outcomes of COVID-19 is developing safe and effective broad-spectrum vaccines. Here, we present preclinical studies of a RBD vaccine derived from the Gamma SARS-CoV-2 variant adjuvanted with Alum. The Gamma-adapted RBD vaccine is more immunogenic than the Ancestral RBD vaccine in terms of inducing broader neutralizing antibodies.
View Article and Find Full Text PDFShiga-toxin producing Escherichia coli (STEC) infections can cause from bloody diarrhea to Hemolytic Uremic Syndrome. The STEC intestinal infection triggers an inflammatory response that can facilitate the development of a systemic disease. We report here that neutrophils might contribute to this inflammatory response by secreting Interleukin 1 beta (IL-1β).
View Article and Find Full Text PDFA Gamma Variant RBD-based aluminum hydroxide adjuvanted vaccine called ARVAC CG was selected for a first in human clinical trial. Healthy male and female participants (18-55 years old) with a complete COVID-19-primary vaccine scheme were assigned to receive two intramuscular doses of either a low-dose or a high-dose of ARVAC CG. The primary endpoint was safety.
View Article and Find Full Text PDFBrucellosis remains one of the most worldwide distributed zoonosis inflicting serious economical and human health problems in many areas of the world. The disease is caused by different species of the genus Brucella that have different tropisms towards different mammals being the most relevant for human health Brucella abortus, Brucella melitensis and Brucella suis that infect cows, goats/sheep, and swine respectively. For B.
View Article and Find Full Text PDFDue to the high number of doses required to achieve adequate coverage in the context of COVID-19 pandemics, there is a great need for novel vaccine developments. In this field, there have been research approaches that focused on the production of SARS-CoV-2 virus-like particles. These are promising vaccine candidates as their structure is similar to that of native virions but they lack the genome, constituting a biosafe alternative.
View Article and Find Full Text PDFSpike protein from SARS-CoV-2, the etiologic agent of the COVID-19 pandemic disease, constitutes a structural protein that proved to be the main responsible for neutralizing antibody production. Thus, its sequence is highly considered for the design of candidate vaccines. Animal cell culture represents the best option for the production of subunit vaccines based on recombinant proteins since they introduce post-translational modifications that are important to mimic the natural antigenic epitopes.
View Article and Find Full Text PDFU-Omp19 is a bacterial protease inhibitor from that inhibits gastrointestinal and lysosomal proteases, enhancing the half-life and immunogenicity of co-delivered antigens. U-Omp19 is a novel adjuvant that is in preclinical development with various vaccine candidates. However, the molecular mechanisms by which it exerts these functions and the structural elements responsible for these activities remain unknown.
View Article and Find Full Text PDFFront Immunol
March 2022
In this work, we evaluated recombinant receptor binding domain (RBD)-based vaccine formulation prototypes with potential for further clinical development. We assessed different formulations containing RBD plus alum, AddaS03, AddaVax, or the combination of alum and U-Omp19: a novel spp. protease inhibitor vaccine adjuvant.
View Article and Find Full Text PDFThe development of a Chagaś disease vaccine has yet the need for the identification of novel combinations of antigens and adjuvants. Here, the performance of TcTASV-C proteins that are virulence factors of trypomastigotes and belong to a novel surface protein family specific for T. cruzi, have been evaluated as antigens for a prophylactic vaccine.
View Article and Find Full Text PDFUnlipidated outer membrane protein 19 (U-Omp19) is a novel mucosal adjuvant in preclinical development to be used in vaccine formulations. U-Omp19 holds two main properties, it is capable of inhibiting gastrointestinal and lysosomal peptidases, increasing the amount of co-administered antigen that reaches the immune inductive sites and its half-life inside cells, and it is able to stimulate antigen presenting cells in vivo. These activities enable U-Omp19 to enhance the adaptive immune response to co-administrated antigens.
View Article and Find Full Text PDFAcute diarrhea disease caused by bacterial infections is a major global health problem. Enterotoxigenic Escherichia coli (ETEC) is one of the top causes of diarrhea-associated morbidity and mortality in young children and travelers to low-income countries. There are currently no licensed vaccines for ETEC.
View Article and Find Full Text PDFBackground: IgE-mediated food allergy remains a significant and growing worldwide problem. Sublingual immunotherapy (SLIT) shows an excellent safety profile for food allergy, but the clinical efficacy needs to be improved. This study assessed the effects of the Toll-like receptor 4 agonist outer membrane protein (Omp) 16 from Brucella abortus combined with cow´s milk proteins (CMP) through the sublingual route to modulate cow's milk allergy in an experimental model.
View Article and Find Full Text PDFPathogenic microorganisms confront several proteolytic events in the molecular interplay with their host, highlighting that proteolysis and its regulation play an important role during infection. Microbial inhibitors, along with their target endogenous/exogenous enzymes, may directly affect the host's defense mechanisms and promote infection. Omp19 is a spp.
View Article and Find Full Text PDFThe study of capture and processing of antigens (Ags) by intestinal epithelial cells is very important for development of new oral administration systems. Efficient oral Ag delivery systems must resist enzymatic degradation by gastric and intestinal proteases and deliver the Ag across biological barriers. The recombinant unlipidated outer membrane protein from Brucella spp.
View Article and Find Full Text PDFBrucellaceae are stealthy pathogens with the ability to survive and replicate in the host in the context of a strong immune response. This capacity relies on several virulence factors that are able to modulate the immune system and in their structural components that have low proinflammatory activities. Lipopolysaccharide (LPS), the main component of the outer membrane, is a central virulence factor of Brucella, and it has been well established that it induces a low inflammatory response.
View Article and Find Full Text PDFMost pathogens infect through mucosal surfaces, and parenteral immunization typically fails to induce effective immune responses at these sites. Development of oral-administered vaccines capable of inducing mucosal as well as systemic immunity while bypassing the issues of antigen degradation and immune tolerance could be crucial for the control of enteropathogens. This study demonstrates that U-Omp19, a bacterial protease inhibitor with immunostimulatory features, coadministered with antigens by the oral route, enhances mucosal and systemic immune responses in mice.
View Article and Find Full Text PDFIn this study, we demonstrate that the unlipidated (U) outer membrane protein (Omp) 19 from Brucella spp. is a competitive inhibitor of human cathepsin L. U-Omp19 inhibits lysosome cathepsins and APC-derived microsome activity in vitro and partially inhibits lysosomal cathepsin L activity within live APCs.
View Article and Find Full Text PDFVaccine
January 2016
The discovery of effective adjuvants for many vaccines especially those with limited commercial appeal, such as vaccines to poverty-related diseases, is required. In this work, we demonstrated that subcutaneous co-administration of mice with the outer membrane protein U-Omp19 from Brucella spp. plus OVA as antigen (Ag) increases Ag-specific T cell proliferation and T helper (Th) 1 immune responses in vitro and in vivo.
View Article and Find Full Text PDFJ Control Release
December 2015
We report here that a bacterial protease inhibitor from Brucella spp. called U-Omp19 behaves as an ideal constituent for a vaccine formulation against infectious diseases. When co-administered orally with an antigen (Ag), U-Omp19: i) can bypass the harsh environment of the gastrointestinal tract by inhibiting stomach and intestine proteases and consequently increases the half-life of the co-administered Ag at immune inductive sites: Peyer's patches and mesenteric lymph nodes while ii) it induces the recruitment and activation of antigen presenting cells (APCs) and increases the amount of intracellular Ag inside APCs.
View Article and Find Full Text PDFFood allergies are increasingly common disorders and no therapeutic strategies are yet approved. The unlipidated Omp16 (U-Omp16) is the outer membrane protein of 16 kDa from B. abortus and possesses a mucosal adjuvant property.
View Article and Find Full Text PDFCanine brucellosis is an infectious disease caused by the Gram-negative bacterium Brucella canis. Unlike conventional control programs for other species of the genus Brucella, currently there is no vaccine available against canine brucellosis, and preventive measures are simply diagnosis and isolation of infected dogs. New approaches are therefore needed to develop an effective and safe immunization strategy against this zoonotic pathogen.
View Article and Find Full Text PDFBrucella, the etiological agent of animal and human brucellosis, is a bacterium with the capacity to modulate the inflammatory response. Cyclic β-1,2-glucan (CβG) is a virulence factor key for the pathogenesis of Brucella as it is involved in the intracellular life cycle of the bacteria. Using comparative studies with different CβG mutants of Brucella, cgs (CβG synthase), cgt (CβG transporter) and cgm (CβG modifier), we have identified different roles for this polysaccharide in Brucella.
View Article and Find Full Text PDF