The mechanisms by which a high-fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunction and redox imbalance. The functional loss of the enzyme NAD(P) transhydrogenase, a main source of mitochondrial NADPH, results in impaired mitochondrial peroxide removal, pyruvate dehydrogenase inhibition by phosphorylation, and progression of NAFLD in HFD-fed mice. The present study aimed to investigate whether pharmacological reactivation of pyruvate dehydrogenase by dichloroacetate attenuates the mitochondrial redox dysfunction and the development of NAFLD in NAD(P) transhydrogenase-null (Nnt) mice fed an HFD (60% of total calories from fat).
View Article and Find Full Text PDFHO is endogenously generated and its removal in the matrix of skeletal muscle mitochondria (SMM) is dependent on NADPH likely provided by NAD(P) transhydrogenase (NNT) and isocitrate dehydrogenase (IDH2). Importantly, NNT activity is linked to mitochondrial protonmotive force. Here, we demonstrate the presence of NNT function in detergent-solubilized and intact functional SMM isolated from rats and wild type (Nnt) mice, but not in SMM from congenic mice carrying a mutated NNT gene (Nnt).
View Article and Find Full Text PDFAmong mitochondrial NADP-reducing enzymes, nicotinamide nucleotide transhydrogenase (NNT) establishes an elevated matrix NADPH/NADP by catalyzing the reduction of NADP at the expense of NADH oxidation coupled to inward proton translocation across the inner mitochondrial membrane. Here, we characterize NNT activity and mitochondrial redox balance in the brain using a congenic mouse model carrying the mutated Nnt gene from the C57BL/6J strain. The absence of NNT activity resulted in lower total NADPH sources activity in the brain mitochondria of young mice, an effect that was partially compensated in aged mice.
View Article and Find Full Text PDFThe mechanisms by which a high fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) appear to involve liver mitochondrial dysfunctions and redox imbalance. We hypothesized that a HFD would increase mitochondrial reliance on NAD(P)-transhydrogenase (NNT) as the source of NADPH for antioxidant systems that counteract NAFLD development. Therefore, we studied HFD-induced liver mitochondrial dysfunctions and NAFLD in C57Unib.
View Article and Find Full Text PDFJ Biol Chem
September 2016
The forward reaction of nicotinamide nucleotide transhydrogenase (NNT) reduces NADP(+) at the expense of NADH oxidation and H(+) movement down the electrochemical potential across the inner mitochondrial membrane, establishing an NADPH/NADP(+) ratio severalfold higher than the NADH/NAD(+) ratio in the matrix. In turn, NADPH drives processes, such as peroxide detoxification and reductive biosynthesis. In this study, we generated a congenic mouse model carrying a mutated Nnt(C57BL/6J) allele from the C57BL/6J substrain.
View Article and Find Full Text PDFIn addition to be the cell's powerhouse, mitochondria also contain a cell death machinery that includes highly regulated processes such as the membrane permeability transition pore (PTP) and reactive oxygen species (ROS) production. In this context, the results presented here provide evidence that liver mitochondria isolated from Gracilinanus microtarsus, a small and short life span (one year) marsupial, when compared to mice, are much more susceptible to PTP opening in association with a poor NADPH dependent antioxidant capacity. Liver mitochondria isolated from the marsupial are well coupled and take up Ca(2+) but exhibited a much lower Ca(2+) retention capacity than mouse mitochondria.
View Article and Find Full Text PDFNADPH is the reducing agent for mitochondrial H2O2 detoxification systems. Nicotinamide nucleotide transhydrogenase (NNT), an integral protein located in the inner mitochondrial membrane, contributes to an elevated mitochondrial NADPH/NADP(+) ratio. This enzyme catalyzes the reduction of NADP(+) at the expense of NADH oxidation and H(+) reentry to the mitochondrial matrix.
View Article and Find Full Text PDFJ Bioenerg Biomembr
December 2011
Mitochondrial permeability transition is typically characterized by Ca(2+) and oxidative stress-induced opening of a nonselective proteinaceous membrane pore sensitive to cyclosporin A, known as the permeability transition pore (PTP). Data from our laboratory provide evidence that the PTP is formed when inner membrane proteins aggregate as a result of disulfide cross-linking caused by thiol oxidation. Here we compared the redox properties between PTP in intact mitochondria and mitoplasts.
View Article and Find Full Text PDFBackground: Reactive oxygen species have been implicated in the physiopathogenesis of hypertensive end-organ damage. This study investigated the impact of the C242T polymorphism of the p22-phox gene (CYBA) on left ventricular structure in Brazilian hypertensive subjects.
Methods: We cross-sectionally evaluated 561 patients from 2 independent centers [Campinas (n = 441) and Vitória (n = 120)] by clinical history, physical examination, anthropometry, analysis of metabolic and echocardiography parameters as well as p22-phox C242T polymorphism genotyping.