We theoretically demonstrate that the chiral structure of the nodes of nodal semimetals is responsible for the existence and universal local properties of the edge states in the vicinity of the nodes. We perform a general analysis of the edge states for an isolated node of a 2D semimetal, protected by chiral symmetry and characterized by the topological winding number N. We derive the asymptotic chiral-symmetric boundary conditions and find that there are N+1 universal classes of them.
View Article and Find Full Text PDF