Manganese (Mn), a cofactor for various enzyme classes, is an essential trace metal for all organisms. However, overexposure to Mn causes neurotoxicity. Here, we evaluated the effects of exposure to Mn chloride (MnCl) on viability, morphology, synapse function (based on neurogranin expression) and behavior of zebrafish larvae.
View Article and Find Full Text PDFThe torus semicircularis (TS) of teleosts is a key midbrain center of the lateral line and acoustic sensory systems. To characterize the TS in adult zebrafish, we studied their connections using the carbocyanine tracers applied to the TS and to other related nuclei and tracts. Two main TS nuclei, central and ventrolateral, were differentiable by their afferent connections.
View Article and Find Full Text PDFArticular cartilage injuries are very frequent lesions that if left untreated may degenerate into osteoarthritis. Gene transfer to mesenchymal stem cells (MSCs) provides a powerful approach to treat these lesions by promoting their chondrogenic differentiation into the appropriate cartilage phenotype. Non-viral vectors constitute the safest gene transfer tools, as they avoid important concerns of viral systems including immunogenicity and insertional mutagenesis.
View Article and Find Full Text PDFZinc oxide nanoparticles (ZnO NPs) are among the most widely used nanomaterials. They have multiple applications in cosmetics, textiles, paints, electronics and, recently, also in biomedicine. This extensive use of ZnO NPs notably increases the probability that both humans and wildlife are subjected to undesirable effects.
View Article and Find Full Text PDFBrain Struct Funct
November 2022
Neurogranin (Nrgn) is a neural protein that is enriched in the cerebral cortex and is involved in synaptic plasticity via its interaction with calmodulin. Recently we reported its expression in the brain of the adult zebrafish (Alba-González et al. J Comp Neurol 530:1569-1587, 2022).
View Article and Find Full Text PDFNOP56 belongs to a C/D box small nucleolar ribonucleoprotein complex that is in charge of cleavage and modification of precursor ribosomal RNAs and assembly of the 60S ribosomal subunit. An intronic expansion in gene causes Spinocerebellar Ataxia type 36, a typical late-onset autosomal dominant ataxia. Although vertebrate animal models were created for the intronic expansion, none was studied for the loss of function of .
View Article and Find Full Text PDFWe studied the expression of neurogranin in the brain and some sensory organs (barbel taste buds, olfactory organs, and retina) of adult zebrafish. Database analysis shows zebrafish has two paralog neurogranin genes (nrgna and nrgnb) that translate into three peptides with a conserved IQ domain, as in mammals. Western blots of zebrafish brain extracts using an anti-neurogranin antiserum revealed three separate bands, confirming the presence of three neurogranin peptides.
View Article and Find Full Text PDFWe studied the connections (connectome) of the adult zebrafish pallium using carbocyanine dye tracing and ancillary anatomical methods. The everted zebrafish pallium (dorsal telencephalic area, D) is composed of several major zones (medial, lateral, dorsal, central, anterior, and posterior) distinguishable by their topography, cytoarchitecture, immunohistochemistry, and genoarchitecture. Our comprehensive study reveals poor interconnectivity between these pallial areas, especially between medial (Dm), lateral/dorsal (Dl, Dd), and posterior (Dp) regions.
View Article and Find Full Text PDFRuthenium(II) complexes are currently considered attractive alternatives to the widely used platinum-based drugs. We present herein the synthesis and characterization of half-sandwich ruthenium compounds formulated as [Ru(-cymene)(L)Cl][CFSO] (L = 1,1-bis(methylenediphenylphosphano)ethylene, ; L = 1,1-bis(diphenylphosphano)ethylene, ), which were characterized by elemental analysis, mass spectrometry, H and P{H} NMR, UV-vis and IR spectroscopy, conductivity measurements and cyclic voltammetry. The molecular structures for both complexes were determined by single-crystal X-ray diffraction.
View Article and Find Full Text PDFThis study describes the cytoarchitecture of the torus longitudinalis (TL) in adult zebrafish by using light and electron microscopy, as well as its main connections as revealed by DiI tract tracing. In addition, by using high resolution confocal imaging followed by digital tracing, we describe the morphology of tectal pyramidal cells (type I cells) that are GFP positive in the transgenic line . The TL consists of numerous small and medium-sized neurons located in a longitudinal eminence attached to the medial optic tectum.
View Article and Find Full Text PDFRuthenium(II) complexes are currently considered a viable alternative to the widely used platinum complexes as efficient anticancer agents. We herein present the synthesis and characterization of half-sandwich ruthenium compounds with the general formula [Ru( p-cymene)(L-N,N)Cl][CFSO] (L = 3,6-di-2-pyridyl-1,2,4,5-tetrazine (1) 6,7-dimethyl-2,3-bis(pyridin-2-yl)quinoxaline (2)), which have been synthesized by substitution reactions from the precursor dimer [Ru( p-cymene)(Cl)(μ-Cl)] and were characterized by elemental analysis, mass spectrometry, H NMR, UV-vis, and IR spectroscopy, conductivity measurements, and cyclic voltammetry. The molecular structure for complex 2 was determined by single-crystal X-ray diffraction.
View Article and Find Full Text PDFThe pretectum is a complex region of the caudal diencephalon which in adult zebrafish comprises both retinorecipient (parvocellular superficial, central, intercalated, paracommissural, and periventricular) and non-retinorecipient (magnocellular superficial, posterior, and accessory) pretectal nuclei distributed from periventricular to superficial regions. We conducted a comprehensive study of the connections of pretectal nuclei by using neuronal tracing with fluorescent carbocyanine dyes. This study reveals specialization of efferent connections of the various pretectal nuclei, with nuclei projecting to the optic tectum (paracommissural, central, and periventricular pretectal nuclei), the torus longitudinalis and the cerebellar corpus (paracommissural, central, and intercalated pretectal nuclei), the lateral hypothalamus (magnocellular superficial, posterior, and central pretectal nuclei), and the tegmental regions (accessory and superficial pretectal nuclei).
View Article and Find Full Text PDFThe central connections of the gustatory/general visceral system of the adult zebrafish (Danio rerio) were examined by means of carbocyanine dye tracing. Main primary gustatory centers (facial and vagal lobes) received sensory projections from the facial and vagal nerves, respectively. The vagal nerve also projects to the commissural nucleus of Cajal, a general visceral sensory center.
View Article and Find Full Text PDFThe habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula.
View Article and Find Full Text PDFPolypteriform fishes are believed to be basal to other living ray-finned bony fishes, and they may be useful for providing information of the neural organization that existed in the brain of the earliest ray-finned fishes. The calcium-binding proteins calretinin (CR) and calbindin-D28k (CB) have been widely used to characterize neuronal populations in vertebrate brains. Here, the distribution of the immunoreactivity against CR and CB was investigated in the olfactory organ and brain of Polypterus senegalus and compared to the distribution of these molecules in other ray-finned fishes.
View Article and Find Full Text PDFChondrosteans represent an ancient lineage in ray-finned bony fishes and hence in jawed vertebrates. This immunohistochemical study in the brain of the Siberian sturgeon reports the neuronal distribution of three cytosolic calcium-binding proteins: calbindin-D28k (CB), calretinin (CR), and parvalbumin (PV). CB and CR are widely expressed in different neuron subsets distributed throughout the sturgeon brain.
View Article and Find Full Text PDFThe pineal organ of fish is a photosensitive structure that receives light information from the environment and transduces it into hormonal (rhythmic melatonin secretion) and neural (efferent projections/neurotransmitters) signals. In this study, we focused on this neural output. Thus, we performed a tract-tracing study using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), a fluorescent carbocyanine dye, in order to elucidate the efferent and afferent connections of the pineal organ in the European sea bass.
View Article and Find Full Text PDFIn elasmobranchs the terminal nerve courses separately from the olfactory nerve. This characteristic makes elasmobranchs excellent models to study the anatomy and function of these two systems. Here we study the neural connections of the terminal nerve and olfactory system in two sharks by experimental tracing methods using carbocyanine dyes.
View Article and Find Full Text PDFCalretinin immunohistochemistry was used to study the organization of some cerebellar structures and lateral line medullary nuclei of an elasmobranch, the lesser-spotted dogfish Scyliorhinus canicula. In the cerebellar molecular layer, stellate cells are strongly calretinin-immunoreactive (CR-ir). Perikarya and dendrites of Purkinje cells are contacted by numerous stellate cell small CR-ir boutons.
View Article and Find Full Text PDFThe distribution of two calcium-binding proteins, calbindin D-28K (CB) and calretinin (CR) was studied in the retina of a cladistian, Polypterus senegalus, and three cartilaginous fishes (Scyliorhinus canicula, Raja undulata and Torpedo marmorata). Western blot analysis of brain extracts revealed the lack of cross-reactivity of the used antibodies. In Polypterus, CB and CR immunoreactivities were observed in some amacrine and ganglion cells, but scarce cells showed CR/CB colocalization.
View Article and Find Full Text PDFThe neuronal tracer DiI was applied to different brain centers of the rainbow trout in order to study the connections of pretectal nuclei. Our results showed that some pretectal nuclei receive a direct projection from the contralateral retina: the parvocellular superficial pretectal nucleus, the central pretectal nucleus, the intermediate pretectal nucleus and the ventral accessory optic nucleus. In turn, the central pretectal, the intermediate pretectal and the ventral accessory optic nuclei, together with the paracommissural nucleus, project to the cerebellum and the torus longitudinalis.
View Article and Find Full Text PDFThe torus longitudinalis (TL) is a tectum-associated structure of actinopterygian fishes. The organization of the TL of rainbow trout was studied with Nissl staining, Golgi methods, immunocytochemistry with antibodies to gamma-aminobutyric acid (GABA), glutamic acid decarboxylase (GAD), and the GABA(A) receptor subunits delta and beta2/beta 3, and with tract tracing methods. Two types of neuron were characterized: medium-sized GABAergic neurons and small GABA-negative granule cells.
View Article and Find Full Text PDFThe connections of the cerebellum of the rainbow trout were studied by experimental methods. The pretectal paracommissural nucleus has reciprocal connections with the cerebellum. Three additional pretectal nuclei project to both the corpus and valvula cerebelli, and seem to receive cerebellar afferents.
View Article and Find Full Text PDFSturgeons belong to an ancient group of the extant actinopterygian fishes. Accordingly, the study of their brain connections is important to understand brain evolution in the line leading to teleosts. We examined the topography and connections of the various telencephalic regions of the Siberian sturgeon (Acipenser baeri).
View Article and Find Full Text PDFThe fluorescent carbocyanine dye 1,1'-dioctadecyl 3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was used in fixed tissue to comprehensively analyze the connections of the olfactory bulbs and the different regions of the ventral (V) area of the telencephalic lobes (subpallium) of the rainbow trout. With this goal, DiI was applied to the different telencephalic nuclei and zones, as well as to the olfactory nerve, the olfactory bulb, the retina, and to several structures in the diencephalon and brainstem of juvenile trout. The olfactory bulbs maintain reciprocal connections with several regions of the telencephalon [ventral nucleus of V (Vv), supracommissural nucleus (Vs), posterior zone of D (Dp), preoptic nucleus], and also project to the diencephalon (posterior tuberal nucleus, posterior hypothalamic lobe).
View Article and Find Full Text PDF