The sensor kinase DcuS of Escherichia coli co-operates under aerobic conditions with the C -dicarboxylate transporter DctA to form the DctA/DcuS sensor complex. Under anaerobic conditions C -dicarboxylate transport in fumarate respiration is catalyzed by C -dicarboxylate/fumarate antiporter DcuB. (i) DcuB interacted with DcuS as demonstrated by a bacterial two-hybrid system (BACTH) and by co-chromatography of the solubilized membrane-proteins (mHPINE assay).
View Article and Find Full Text PDFThe membrane-integral sensor kinase DcuS of Escherichia coli consists of a periplasmically located sensory PAS(P) domain, transmembrane helices TM1 and TM2, a cytoplasmic PAS(C) domain and the kinase domain. Stimulus (C(4)-dicarboxylate) binding at PAS(P) is required to stimulate phosphorylation of the kinase domain, resulting in phosphoryl transfer to the response regulator DcuR. PAS(C) functions as a signaling device or a relay in signal transfer from TM2 to the kinase.
View Article and Find Full Text PDFThe aerobic Escherichia coli C(4) -dicarboxylate transporter DctA and the anaerobic fumarate/succinate antiporter DcuB function as obligate co-sensors of the fumarate responsive sensor kinase DcuS under aerobic or anaerobic conditions respectively. Overproduction under anaerobic conditions allowed DctA to replace DcuB in co-sensing, indicating their functional equivalence in this capacity. In vivo interaction studies between DctA and DcuS using FRET or a bacterial two-hybrid system (BACTH) demonstrated their interaction.
View Article and Find Full Text PDF