Publications by authors named "Julian Susat"

Yersinia pestis has been infecting humans since the Late Neolithic (LN). Whether those early infections were isolated zoonoses or initiators of a pandemic remains unclear. We report Y.

View Article and Find Full Text PDF

Several dog skeletons were excavated at the Roman town of Augusta Raurica and at the military camp of Vindonissa, located in the northern Alpine region of Switzerland (Germania Superior). The relationships between them and the people, the nature of their lives, and the circumstances of their deaths are unclear. In order to gain insight into this dog population, we collected 31 dogs deposited almost simultaneously in two wells (second half of the third century CE), three dogs from burial contexts (70-200 CE and third to fifth century CE) at Augusta Raurica, and two dogs from burial contexts at Vindonissa (ca.

View Article and Find Full Text PDF

is the causative agent of at least three major plague pandemics (Justinianic, Medieval and Modern). Previous studies on ancient genomes revealed that several genomic alterations had occurred approximately 5000-3000 years ago and contributed to the remarkable virulence of this pathogen. How a subset of strains evolved to cause the Modern pandemic is less well-understood.

View Article and Find Full Text PDF

Background: The pathogen landscape in the Early European Middle Ages remains largely unexplored. Here, we perform a systematic pathogen screening of the rural community Lauchheim "Mittelhofen," in present-day Germany, dated to the Merovingian period, between fifth and eighth century CE. Skeletal remains of individuals were subjected to an ancient DNA metagenomic analysis.

View Article and Find Full Text PDF

A 5,000-year-old Yersinia pestis genome (RV 2039) is reconstructed from a hunter-fisher-gatherer (5300-5050 cal BP) buried at Riņņukalns, Latvia. RV 2039 is the first in a series of ancient strains that evolved shortly after the split of Y. pestis from its antecessor Y.

View Article and Find Full Text PDF

Pathogens and associated outbreaks of infectious disease exert selective pressure on human populations, and any changes in allele frequencies that result may be especially evident for genes involved in immunity. In this regard, the 1346-1353 Yersinia pestis-caused Black Death pandemic, with continued plague outbreaks spanning several hundred years, is one of the most devastating recorded in human history. To investigate the potential impact of Y.

View Article and Find Full Text PDF

Medieval Europe was repeatedly affected by outbreaks of infectious diseases, some of which reached epidemic proportions. A Late Medieval mass burial next to the Heiligen-Geist-Hospital in Lübeck (present-day Germany) contained the skeletal remains of more than 800 individuals who had presumably died from infectious disease. From 92 individuals, we screened the ancient DNA extracts for the presence of pathogens to determine the cause of death.

View Article and Find Full Text PDF

The historical phylogeography of Ostrea edulis was successfully depicted in its native range for the first time using ancient DNA methods on dry shells from museum collections. This research reconstructed the historical population structure of the European flat oyster across Europe in the 1870s-including the now extinct population in the Wadden Sea. In total, four haplogroups were identified with one haplogroup having a patchy distribution from the North Sea to the Atlantic coast of France.

View Article and Find Full Text PDF

The Wartberg culture (WBC, 3500-2800 BCE) dates to the Late Neolithic period, a time of important demographic and cultural transformations in western Europe. We performed genome-wide analyses of 42 individuals who were interred in a WBC collective burial in Niedertiefenbach, Germany (3300-3200 cal. BCE).

View Article and Find Full Text PDF

Ancient genomic studies have identified Yersinia pestis (Y. pestis) as the causative agent of the second plague pandemic (fourteenth-eighteenth century) that started with the Black Death (1,347-1,353). Most of the Y.

View Article and Find Full Text PDF

The highly polymorphic human leukocyte antigen (HLA) plays a crucial role in adaptive immunity and is associated with various complex diseases. Accurate analysis of HLA genes using ancient DNA (aDNA) data is crucial for understanding their role in human adaptation to pathogens. Here, we describe the TARGT pipeline for targeted analysis of polymorphic loci from low-coverage shotgun sequence data.

View Article and Find Full Text PDF

The Cucuteni-Trypillia complex (CTC) flourished in eastern Europe for over two millennia (5100-2800 BCE) from the end of the Neolithic to the Early Bronze Age. Its vast distribution area encompassed modern-day eastern Romania, Moldova and western/central Ukraine. Due to a lack of existing burials throughout most of this time, only little is known about the people associated with this complex and their genetic composition.

View Article and Find Full Text PDF

The Third Annual Meeting of the European Virus Bioinformatics Center (EVBC) took place in Glasgow, United Kingdom, 28-29 March 2019. Virus bioinformatics has become central to virology research, and advances in bioinformatics have led to improved approaches to investigate viral infections and outbreaks, being successfully used to detect, control, and treat infections of humans and animals. This active field of research has attracted approximately 110 experts in virology and bioinformatics/computational biology from Europe and other parts of the world to attend the two-day meeting in Glasgow to increase scientific exchange between laboratory- and computer-based researchers.

View Article and Find Full Text PDF

The hepatitis B virus (HBV) is one of the most widespread human pathogens known today, yet its origin and evolutionary history are still unclear and controversial. Here, we report the analysis of three ancient HBV genomes recovered from human skeletons found at three different archaeological sites in Germany. We reconstructed two Neolithic and one medieval HBV genome by assembly from shotgun DNA sequencing data.

View Article and Find Full Text PDF
Article Synopsis
  • Leprosy was a common disease in Europe until the 16th century, caused by a germ called Mycobacterium leprae.
  • Scientists studied old skeletons from Denmark to find out if they had this disease and managed to get complete DNA from 10 different bacteria, showing that the germs were diverse.
  • They also discovered that a specific gene, which makes people more likely to get leprosy today, was also linked to medieval people, indicating they might have been at risk too.
View Article and Find Full Text PDF