Photomediated Atom Transfer Radical Polymerization (photoATRP) is an activator regeneration method, which allows for the controlled synthesis of well-defined polymers via light irradiation. Traditional photoATRP is often limited by the need for high-energy ultraviolet or violet light. These could negatively affect the control and selectivity of the polymerization, promote side reactions, and may not be applicable to biologically relevant systems.
View Article and Find Full Text PDFIn atom transfer radical polymerization (ATRP), dormant alkyl halides are intermittently activated to form growing radicals in the presence of a Cu/L/X-Cu/L (activator/deactivator) catalytic system. Recently developed very active copper complexes could decrease the catalyst concentration to ppm level. However, unavoidable radical termination results in irreversible oxidation of the activator to the deactivator species, leading to limited monomer conversions.
View Article and Find Full Text PDFTopology significantly impacts polymer properties and applications. Hyperbranched polymers (HBPs) synthesized via atom transfer radical polymerization (ATRP) using inimers typically exhibit broad molecular weight distributions and limited control over branching. Alternatively, copolymerization of inibramers (IB), such as α-chloro/bromo acrylates with vinyl monomers, yields HBPs with precise and uniform branching.
View Article and Find Full Text PDFZinc oxide (ZnO) was previously reported as an excellent cocatalyst for mechanically controlled atom transfer radical polymerization (mechanoATRP), but its photocatalytic properties in photoinduced ATRP (photoATRP) have been much less explored. Herein, well-defined ZnO nanocrystals were prepared via microwave-assisted synthesis and applied as a heterogeneous cocatalyst in mechano- and photoATRP. Both techniques yielded polymers with outstanding control over the molecular weight, but ZnO-cocatalyzed photoATRP was much faster than analogous mechanoATRP (conversion of 91% in 1 h vs 54% in 5 h).
View Article and Find Full Text PDFAtom transfer radical polymerization (ATRP) of oligo(ethylene oxide) monomethyl ether methacrylate (OEOMA ) in water is enabled using CuBr with tris(2-pyridylmethyl)amine (TPMA) as a ligand under blue or green-light irradiation without requiring any additional reagent, such as a photo-reductant, or the need for prior deoxygenation. Polymers with low dispersity (Đ = 1.18-1.
View Article and Find Full Text PDFSilica particles with grafted poly(methyl methacrylate) brushes, SiO--PMMA, were prepared via activator regeneration by electron transfer (ARGET) atom transfer radical polymerization (ATRP). The grafting density and dispersity of the polymer brushes was tuned by the initial ATRP catalyst concentration ([Cu/L]). Sparsely grafted particle brushes, which also displayed an anisotropic string-like structure in TEM images, were obtained at very low catalyst concentrations, [Cu/L] < 1 ppm.
View Article and Find Full Text PDF