The rich physical properties of multiatomic crystals are determined, to a significant extent, by the underlying geometry and connectivity of atomic orbitals. The mixing of orbitals with distinct parity representations, such as s and p orbitals, has been shown to be useful for generating systems that require alternating phase patterns, as with the sign of couplings within a lattice. Here we show that by breaking the symmetries of such mixed-orbital lattices, it is possible to generate synthetic magnetic flux threading the lattice.
View Article and Find Full Text PDFArtificial gauge fields the control over the dynamics of uncharged particles by engineering the potential landscape such that the particles behave as if effective external fields are acting on them. Recent years have witnessed a growing interest in artificial gauge fields generated either by the geometry or by time-dependent modulation, as they have been enablers of topological phenomena and synthetic dimensions in many physical settings, e.g.
View Article and Find Full Text PDFThe discovery of artificial gauge fields controlling the dynamics of uncharged particles that otherwise elude the influence of standard electromagnetic fields has revolutionised the field of quantum simulation. Hence, developing new techniques to induce these fields is essential to boost quantum simulation of photonic structures. Here, we experimentally demonstrate the generation of an artificial gauge field in a photonic lattice by modifying the topological charge of a light beam, overcoming the need to modify the geometry along the evolution or impose external fields.
View Article and Find Full Text PDFObjective: To test the impact of zirconia pretreatment and aging on flexural strength and phase structure.
Methods: For flexural strength measurements, 180 3Y-TZP specimens were fabricated and pretreated: (i) air-abraded (105-μm alumina, 0.25MPa), (ii) air-abraded (50-μm alumina, 0.
Background: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of kidney disease in the first three decades of life. Previous gene panel studies showed monogenic causation in up to 12% of patients with CAKUT.
Methods: We applied whole-exome sequencing to analyze the genotypes of individuals from 232 families with CAKUT, evaluating for mutations in single genes known to cause human CAKUT and genes known to cause CAKUT in mice.
Diatoms are unicellular organisms evolved by secondary endosymbiosis. Although studied in many aspects, the functions of vacuolar-like structures of these organisms are rarely investigated. One of these structures is a dominant central vacuole-like compartment with a marbled phenotype, which is supposed to represent a chrysolaminarin-storing and carbohydrate mobilization compartment.
View Article and Find Full Text PDFCongenital anomalies of the kidneys and urinary tract (CAKUT) are the leading cause of CKD in children, featuring a broad variety of malformations. A monogenic cause can be detected in around 12% of patients. However, the morphologic clinical phenotype of CAKUT frequently does not indicate specific genes to be examined.
View Article and Find Full Text PDFMost secondary plastids of red algal origin are surrounded by four membranes and nucleus-encoded plastid proteins have to traverse these barriers. Translocation across the second outermost plastid membrane, the periplastidal membrane (PPM), is facilitated by a ERAD-(ER-associated degradation) derived machinery termed SELMA (symbiont-specific ERAD-like machinery). In the last years, important subunits of this translocator have been identified, which clearly imply compositional similarities between SELMA and ERAD.
View Article and Find Full Text PDFCongenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life. Identification of single-gene mutations that cause CAKUT permits the first insights into related disease mechanisms. However, for most cases the underlying defect remains elusive.
View Article and Find Full Text PDFCongenital anomalies of the kidney and urinary tract (CAKUT) account for 40-50% of chronic kidney disease that manifests in the first two decades of life. Thus far, 31 monogenic causes of isolated CAKUT have been described, explaining ~12% of cases. To identify additional CAKUT-causing genes, we performed whole-exome sequencing followed by a genetic burden analysis in 26 genetically unsolved families with CAKUT.
View Article and Find Full Text PDFPurpose: The potential of dual energy computed tomography (DECT) for the analysis of gallstone compounds was investigated. The main goal was to find parameters, that can reliably define high percentage (>70%) cholesterol stones without calcium components.
Materials And Methods: 35 gallstones were analyzed with DECT using a phantom model.