Objective: Intra-oral scans and gypsum cast scans (OS) are widely used in orthodontics, prosthetics, implantology, and orthognathic surgery to plan patient-specific treatments, which require teeth segmentations with high accuracy and resolution. Manual teeth segmentation, the gold standard up until now, is time-consuming, tedious, and observer-dependent. This study aims to develop an automated teeth segmentation and labeling system using deep learning.
View Article and Find Full Text PDFObjective: The aim of this study is to automatically detect, segment and label teeth, crowns, fillings, root canal fillings, implants and root remnants on panoramic radiographs (PR(s)).
Material And Methods: As a reference, 2000 PR(s) were manually annotated and labeled. A deep-learning approach based on mask R-CNN with Resnet-50 in combination with a rule-based heuristic algorithm and a combinatorial search algorithm was trained and validated on 1800 PR(s).