Publications by authors named "Julian Saba"

Article Synopsis
  • The study explores how column temperature affects the selectivity of reversed-phase peptide separation in bottom-up proteomics during LC-MS/MS analysis.
  • Results show that peptide identification plateaus between 45-55 °C, influenced by better separation, decreased retention, and potential peptide degradation at higher temperatures.
  • The research also reveals that peptide retention decreases linearly with temperature increases, suggesting temperature adjustments can enhance peptide retention and that excessively high temperatures can significantly reduce identifiable peptides.
View Article and Find Full Text PDF

We present the first detailed study of chromatographic behavior of peptides labeled with tandem mass tags (TMT and TMTpro) in 2D LC for proteomic applications. Carefully designed experimental procedures have permitted generating data sets of over 100,000 nonlabeled and TMT-labeled peptide pairs for the low pH RP in the second separation dimension and data sets of over 10,000 peptide pairs for high-pH RP, HILIC (amide and silica), and SCX separations in the first separation dimension. The average increase in peptide RPLC (0.

View Article and Find Full Text PDF

Characterization of glycans present on glycoproteins has become of increasing importance due to their biological implications, such as protein folding, immunogenicity, cell-cell adhesion, clearance, receptor interactions, etc. In this study, the resolving power of high-performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD) was applied to glycan separations and coupled to mass spectrometry to characterize native glycans released from different glycoproteins. A new, rapid workflow generates glycans from 200 μg of glycoprotein supporting reliable and reproducible annotation by mass spectrometry (MS).

View Article and Find Full Text PDF

Protein glycosylation plays an important role in various biological processes, such as modification of protein function, regulation of protein-protein interactions, and control of turnover rates of proteins. Moreover, glycans have been considered as potential biomarkers for many mammalian diseases and development of aberrant glycosylation profiles is an important indicator of the pathology of a disease or cancer. Hence, quantitation is an important aspect of a comprehensive glycomics study.

View Article and Find Full Text PDF

Discrepancy in synaptic structural plasticity is one of the earliest manifestations of the neurodegenerative state. In prion diseases, a reduction in synapses and dendritic spine densities is observed during preclinical disease in neurons of the cortex and hippocampus. The underlying molecular mechanisms of these alterations have not been identified but microRNAs (miRNAs), many of which are enriched at the synapse, likely regulate local protein synthesis in rapid response to stressors such as replicating prions.

View Article and Find Full Text PDF

Protein glycosylation is a common post-translational modification, which serves critical roles in the biological processes of organisms. Monitoring of changes in the abundance and structure of glycans may be necessary to explain the correlations between protein glycosylation and various diseases. Hence, the growing importance of glycoproteomics necessitates in-depth qualitative and quantitative studies of glycans.

View Article and Find Full Text PDF

The opportunistic human pathogen Acinetobacter baumannii is a concern to health care systems worldwide because of its persistence in clinical settings and the growing frequency of multiple drug resistant infections. To combat this threat, it is necessary to understand factors associated with disease and environmental persistence of A. baumannii.

View Article and Find Full Text PDF

The grand vision of the human proteome project (HPP) is moving closer to reality with the recent announcement by HUPO of the creation of the HPP consortium in charge of the development of a two-part HPP, one focused on the description of proteomes of biological samples or related to diseases (B/D-HPP) and the other dedicated to a systematic description of proteins as gene products encoded in the human genome (the C-HPP). This new initiative of HUPO seeks to identify and characterize at least one representative protein from every gene, create a protein distribution atlas and a protein pathway or network map. This vision for proteomics can be the roadmap of biological and clinical research for years to come if it delivers on its promises.

View Article and Find Full Text PDF

Currently, glycans are attracting attention from the scientific community as potential biomarkers or as posttranslational modifications (PTMs) of therapeutic proteins. However, structural characterization of glycoproteins and glycopeptides remains analytically challenging. Here, we report on the implementation of a novel acquisition strategy termed higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation (HCD-PD-ETD) on a hybrid linear ion trap-orbitrap mass spectrometer.

View Article and Find Full Text PDF

In this report we describe an on-column method for glycopeptide enrichment with cellulose as a solid-phase extraction material. The method was developed using tryptic digests of several standard glycoproteins and validated with more complex standard protein digest mixtures. Glycopeptides of different masses containing neutral and acidic glycoforms of both N- and O-linked sugars were obtained in good yield by this method.

View Article and Find Full Text PDF

We describe the use and application of high-field asymmetric waveform ion mobility spectrometry combined with nanoscale liquid chromatography mass spectrometry (nanoLC-FAIMS-MS) to improve the sensitivity and dynamic range of proteomics analyses on a hybrid LTQ-Orbitrap mass spectrometer. The ability of FAIMS to enrich multiply protonated peptides against background ions confers a marked advantage in proteomics analyses by decreasing the limits of detection to facilitate the identification of low-abundance peptide ions. These multiply charged ions are recorded into separate acquisition channels to enhance the overall population of detectable peptide ions from a single analysis.

View Article and Find Full Text PDF

Periodontitis is an inflammatory disease initiated by host-parasite interactions which contributes to connective tissue destruction and alveolar bone resorption. Porphyromonas gingivalis (P.g.

View Article and Find Full Text PDF

Oligosaccharides associated with proteins are known to give these molecules specific conformations and functions. Analysis of proteins would not be complete without studying the glycans. However, high-throughput techniques in proteomics will soon overwhelm the current capacity of methods if no automation is incorporated into glycomics.

View Article and Find Full Text PDF

Glycoprotein function is controlled by several biological factors, one of them being the structure of carbohydrate chains (glycans) attached to specific amino acids of the protein backbone. Changes in glycan structures have been shown to modify the secondary and tertiary conformation of glycoproteins, thus their function. Powerful analytical tools are available for the characterization of sugar structures, and recently mass spectrometry (MS) has been increasingly useful for this purpose.

View Article and Find Full Text PDF

N-linked oligosaccharides were released from human and bovine polyclonal immunoglobulin G (IgG) obtained from commercial sources and also from a monoclonal IgG(1) secreted by murine B-lymphocyte hybridoma cells (CC9C10) grown under different serum-free conditions. These conditions differed according to their steady-state dissolved oxygen concentrations. This work is based on a previous quantitative study where released glycans were characterized by fluorophore-assisted carbohydrate electrophoresis (FACE) and high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) (J.

View Article and Find Full Text PDF