The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.
View Article and Find Full Text PDFChemical gardens are self-assembled structures with intricate plant-like morphologies and consist of mineralized membranes, which form spontaneously at interfaces between compartments with dissimilar chemical composition, most typically acidic metal salt and alkaline sodium silicate solutions. While this phenomenon is thought to occur in a number of practical settings, it has also proven to be valuable for investigating transport characteristics in distinct applied systems. For example, coupled diffusion and precipitation processes were monitored in silica gardens based on calcium and iron salts, considered to be models for cement hydration and steel corrosion, respectively.
View Article and Find Full Text PDFChemical gardens are self-assembled tubular precipitates formed by a combination of osmosis, buoyancy, and chemical reaction, and thought to be capable of catalyzing prebiotic condensation reactions. In many cases, the tube wall is a bilayer structure with the properties of a diaphragm and/or a membrane. The interest in silica gardens as microreactors for materials science has increased over the past decade because of their ability to create long-lasting electrochemical potential.
View Article and Find Full Text PDFSilica gardens are extraordinary plant-like structures resulting from the complex interplay of relatively simple inorganic components. Recent work has highlighted that macroscopic self-assembly is accompanied by the spontaneous formation of considerable chemical gradients, which induce a cascade of coupled dissolution, diffusion, and precipitation processes occurring over timescales as long as several days. In the present study, this dynamic behavior was investigated for silica gardens based on iron and cobalt chloride by means of two synchrotron-based techniques, which allow the determination of concentration profiles and time-resolved monitoring of diffraction patterns, thus giving direct insight into the progress of dissolution and crystallization phenomena in the system.
View Article and Find Full Text PDFThis contribution aims to elucidate the connection between ion-ion-solvent interactions in the bulk of aqueous electrolyte solutions and the properties of their liquid-air interface. In particular, we were interested in the conditions under which ion pairs form at the surface and whether this is linked to ion pairing in the bulk. For this reason different combinations of hard (Cl(-), Li(+)) and soft ions (I(-), Cs(+)) were investigated.
View Article and Find Full Text PDF