The histone methyltransferase EZH2 has been the target of numerous small-molecule inhibitor discovery efforts over the last 10+ years. Emerging clinical data have provided early evidence for single agent activity with acceptable safety profiles for first-generation inhibitors. We have developed kinetic methodologies for studying EZH2-inhibitor-binding kinetics that have allowed us to identify a unique structural modification that results in significant increases in the drug-target residence times of all EZH2 inhibitor scaffolds we have studied.
View Article and Find Full Text PDFThe histone acetyltransferases, CREB binding protein (CBP) and EP300, are master transcriptional co-regulators that have been implicated in numerous diseases, such as cancer, inflammatory disorders, and neurodegeneration. A novel, highly potent, orally bioavailable EP300/CBP histone acetyltransferase (HAT) inhibitor, CPI-1612 or , was developed from the lead compound . Replacement of the indole scaffold of with the aminopyridine scaffold of led to improvements in potency, solubility, and bioavailability.
View Article and Find Full Text PDFLeveraging the catalytic machinery of LSD1 (KDM1A), a series of covalent styrenylcyclopropane LSD1 inhibitors were identified. These inhibitors represent a new class of mechanism-based inhibitors that target and covalently label the FAD cofactor of LSD1. The series was rapidly progressed to potent biochemical and cellular LSD1 inhibitors with good physical properties.
View Article and Find Full Text PDFHistone methyltransferase EZH2, which is the catalytic subunit of the PRC2 complex, catalyzes the methylation of histone H3K27-a transcriptionally repressive post-translational modification (PTM). EZH2 is commonly mutated in hematologic malignancies and frequently overexpressed in solid tumors, where its expression level often correlates with poor prognosis. First generation EZH2 inhibitors are beginning to show clinical benefit, and we believe that a second generation EZH2 inhibitor could further build upon this foundation to fully realize the therapeutic potential of EZH2 inhibition.
View Article and Find Full Text PDFContemporary deep learning approaches still struggle to bring a useful improvement in the field of drug discovery because of the challenges of sparse, noisy, and heterogeneous data that are typically encountered in this context. We use a state-of-the-art deep learning method, Alchemite, to impute data from drug discovery projects, including multitarget biochemical activities, phenotypic activities in cell-based assays, and a variety of absorption, distribution, metabolism, and excretion (ADME) endpoints. The resulting model gives excellent predictions for activity and ADME endpoints, offering an average increase in of 0.
View Article and Find Full Text PDFMutant isocitrate dehydrogenase 1 (IDH1) is an attractive therapeutic target for the treatment of various cancers such as AML, glioma, and glioblastoma. We have evaluated 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors that bind to an allosteric, induced pocket of IDH1. This Letter describes SAR exploration focused on improving both the and metabolic stability of the compounds, leading to the identification of as a potent and selective mutant IDH1 inhibitor that has demonstrated brain penetration and excellent oral bioavailability in rodents.
View Article and Find Full Text PDFInhibition of mutant IDH1 is being evaluated clinically as a promising treatment option for various cancers with hotspot mutation at Arg. Having identified an allosteric, induced pocket of IDH1, we have explored 3-pyrimidin-4-yl-oxazolidin-2-ones as mutant IDH1 inhibitors for modulation of 2-HG production and potential brain penetration. We report here optimization efforts toward the identification of clinical candidate (), a potent and selective mutant IDH1 inhibitor that has demonstrated brain exposure in rodents.
View Article and Find Full Text PDFHigh throughput screening and subsequent hit validation identified 4-isopropyl-3-(2-((1-phenylethyl)amino)pyrimidin-4-yl)oxazolidin-2-one as a potent inhibitor of IDH1. Synthesis of the four separate stereoisomers identified the (,)-diastereomer (, ) as the most potent isomer. This also showed reasonable cellular activity and excellent selectivity vs IDH1.
View Article and Find Full Text PDF4H-Substituted pyrylium 9, benzo[b]pyrylium 15, and xanthylium salts 22 react with benzotriazole to give the corresponding 4H-(benzotriazol-1-yl)pyrans 10, benzo[b]pyrans 16, or xanthenes 23. Novel anion precursors 10, 16, and 23 undergo smooth lithiations at the positions alpha to the benzotriazol-1-yl function, i.e.
View Article and Find Full Text PDF