The authors wish to make the following correction to their paper [...
View Article and Find Full Text PDFWe report experimental tests of whether non-rigid, -conjugated luminophores in the photoexcited (ā) and ground (ā) states dissolved in achiral liquids are mirror symmetrical by means of circularly polarized luminescence (CPL) and circular dichroism (CD) spectroscopy. Herein, we chose ten oligofluorenes, eleven linear/cyclic oligo--arylenes, three binaphthyls and five fused aromatics, substituted with alkyl, alkoxy, phenyl and phenylethynyl groups and also with no substituents. Without exception, all these non-rigid luminophores showed negative-sign CPL signals in the UV-visible region, suggesting temporal generation of energetically non-equivalent non-mirror image structures as far-from equilibrium open-flow systems at the Sā state.
View Article and Find Full Text PDFTo elucidate the factors involved in the chiroptical properties of polymer aggregates composed of helical building blocks, a series of rigid rod helical poly[alkyl-(S)-2-methylbutylsilane]s (achiral alkyl side chains = ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl) have been investigated. It was found that the chiroptical sign in the circular dichroism (CD) spectra of the polysilane aggregates depends on the achiral side chain length and cosolvent fraction. Concerning the achiral side chains, the n-propyl group was of a critical length for solvent-dependent chiroptical inversion on aggregation.
View Article and Find Full Text PDFA novel strategy for controlling the higher order chirality of aggregates prepared from enantiopure polysilanes is experimentally probed and discussed. Structurally similar poly[n-alkyl(aryl)]silanes were synthesized in which one side chain comprised the chiral (S)-2-methylbutyl group and the other an achiral m- or p-alkyl-substituted phenyl ring. In solution the polymers adopt helical conformations with the same induced preferential screw sense chirality, as evidenced by circular dichroism (CD) spectroscopy.
View Article and Find Full Text PDFThe silicon backbone is all-trans in the crystal structure of perchloropolysilane [SiCl ] (see structure on the right). The Cl atoms can be substituted by nucleophiles to form polymers such as peralkoxy- and peraminopolysilanes.
View Article and Find Full Text PDF