Introduction: Multiple clinical trials showed that 12 weeks of abrocitinib monotherapy was safe and effective for the treatment of moderate-to-severe atopic dermatitis (AD). The reversibility of pharmacologic activity after abrocitinib discontinuation was not described.
Methods: This post hoc analysis used data from a phase 2b study to evaluate maintenance of disease control during a 4-week drug-free follow-up period in patients with moderate-to-severe AD treated with once-daily abrocitinib (200 mg/100 mg) or placebo for 12 weeks.
Magnetic resonance within the field of wireless power transfer has seen an increase in popularity over the past decades. This rise can be attributed to the technological advances of electronics and the increased efficiency of popular battery technologies. The same principles of electromagnetic theory can be applied to the medical field.
View Article and Find Full Text PDFThe world is recently witnessing an explosive development of novel electronic and optoelectronic devices that demand more-reliable power sources that combine higher energy density and longer-term durability. Supercapacitors have become one of the most promising energy-storage systems, as they present multifold advantages of high power density, fast charging-discharging, and long cyclic stability. However, the intrinsically low energy density inherent to traditional supercapacitors severely limits their widespread applications, triggering researchers to explore new types of supercapacitors with improved performance.
View Article and Find Full Text PDFA promising energy source for many current and future applications is a ribbon-like device that could simultaneously harvest and store energy. Due to the high flexibility and weavable property, a fabric/matrix made using these ribbons could be highly beneficial for powering wearable electronics. Unlike the approach of using two separate devices, here we report a ribbon that integrates a solar cell and a supercapacitor.
View Article and Find Full Text PDFTwo-dimensional (2D) transition-metal dichalcogenides (TMDs) have emerged as promising capacitive materials for supercapacitor devices owing to their intrinsically layered structure and large surface areas. Hierarchically integrating 2D TMDs with other functional nanomaterials has recently been pursued to improve electrochemical performances; however, it often suffers from limited cyclic stabilities and capacitance losses due to the poor structural integrity at the interfaces of randomly assembled materials. Here, we report high-performance core/shell nanowire supercapacitors based on an array of one-dimensional (1D) nanowires seamlessly integrated with conformal 2D TMD layers.
View Article and Find Full Text PDFCable-shaped supercapacitors (SCs) have recently aroused significant attention due to their attractive properties such as small size, lightweight, and bendability. Current cable-shaped SCs have symmetric device configuration. However, if an asymmetric design is used in cable-shaped supercapacitors, they would become more attractive due to broader cell operation voltages, which results in higher energy densities.
View Article and Find Full Text PDFPurpose: To identify single nucleotide polymorphisms (SNPs) associated with erectile dysfunction (ED) among African-American prostate cancer patients treated with external beam radiation therapy.
Methods And Materials: A cohort of African-American prostate cancer patients treated with external beam radiation therapy was observed for the development of ED by use of the five-item Sexual Health Inventory for Men (SHIM) questionnaire. Final analysis included 27 cases (post-treatment SHIM score ≤7) and 52 control subjects (post-treatment SHIM score ≥16).
We compared the frequency and spectra of p53 mutations in skin tumors from UVB-irradiated and benzo(a)pyrene-UVA-treated SKH-1 mice. Analysis of p53 mutations using a combination of polymerase chain reaction, denaturing high-performance liquid chromatography, and sequencing shows that the frequency and spectrum of p53 mutations in BaP-UVA-induced tumors are quite different from those in UVB-induced tumors. SKH-1 mice were treated with BaP-UVA or UVB for 30 weeks after which skin tumors were collected for analysis of p53 mutations.
View Article and Find Full Text PDFGenistein, the most abundant isoflavone of the soy derived phytoestrogen compounds, is a potent antioxidant and inhibitor of tyrosine kinase. We previously reported the antiphotocarcinogenic effects of genistein in SKH-1 murine skin, including its capacity for scavenging reactive oxygen species, inhibiting photodynamic DNA damage and downregulating UVB(ultra violet B)-induced signal transduction cascades in carcinogenesis. In this study we elucidate genistein's photoprotective efficacy within the context of full thickness human reconstituted skin relative to acute challenges with ultraviolet-B irradiation.
View Article and Find Full Text PDFCombined subcarcinogenic doses of benzo[a]pyrene (BaP) and UVA induced H-ras, but not p53, gene mutations 8 weeks before tumor emergence in SKH-1 mice. Neither UVA (40 kJ/m2) nor BaP (8 nmol) induced any tumors after mice were topically treated 3 times/week for 25 weeks. However, combined BaP-UVA treatment synergistically increased tumor incidence and multiplicity.
View Article and Find Full Text PDFProliferating cell nuclear antigen (PCNA) is an active nuclear protein involved in DNA replication, recombination and repair. PCNA is found throughout the basal layer in normal skin and in all layers of the epidermis in malignancy. This study evaluates PCNA's expression after acute and chronic UV-B irradiation.
View Article and Find Full Text PDFGenistein is a soybean isoflavone with diverse biological activities. It is a potent antioxidant, a specific inhibitor of protein tyrosine kinase, and a phytoestrogen. In recent years, increasing evidence has accumulated that this natural ingredient shows preventative and therapeutic effects for breast and prostate cancers, postmenopausal syndrome, osteoporosis, and cardiovascular diseases in animals and humans.
View Article and Find Full Text PDF