The spotted-wing fly, Drosophila suzukii, is a world-wide pest insect for which there is increasing interest in its physiological traits including metabolism and thermotolerance. Most studies focus only on survival to different time exposures to extreme temperatures, mainly in female flies. In addition, it has not been tested yet how anesthesia affects these measurements.
View Article and Find Full Text PDFSurvival and reproduction are the core elements of Darwinian fitness. In the context of a fixed energy budget, organisms tend to allocate resources in order to maximize one at the expense of the other, in what has been called the lifespan-reproduction trade-off. Reproductive arrest and extended lifespan are common responses to low temperatures in many insects including fruit flies.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
August 2021
Many insects overwinter in diapause, a pre-programmed anticipated response to unfavorable environmental conditions, often induced by a short-day photoperiod. Diapause involves morphological changes and increased energy stores required for metabolic demands during winter. In diapausing mosquito eggs, the accumulation of lipids plays an important role, because these molecules are the primary fuel consumed during embryogenesis and pharate larvae metabolism, and have a key role in egg desiccation resistance.
View Article and Find Full Text PDFThe Drosophila repleta group is an array of more than 100 species endemic to the "New World", many of which are cactophilic. The ability to utilize decaying cactus tissues as breeding and feeding sites is a key aspect that allowed the successful diversification of the repleta group in American deserts and arid lands. Within this group, the Drosophila buzzatii cluster is a South American clade of seven closely related species in different stages of divergence, making them a valuable model system for evolutionary research.
View Article and Find Full Text PDFThe range of thermal tolerance is one of the main factors influencing the geographic distribution of species. Climate change projections predict increases in average and extreme temperatures over the coming decades; hence, the ability of living beings to resist these changes will depend on physiological and adaptive responses. On an evolutionary scale, changes will occur as the result of selective pressures on individual heritable differences.
View Article and Find Full Text PDFLong-term exposure to low temperatures during adult maturation might decrease fertility after cold recovery as a consequence of carry-over effects on reproductive tissues. This pattern should be more pronounced in tropical than in temperate species as protective mechanisms against chilling injuries are expected to be more effective in the latter. We initially determined the lower thermal thresholds to induce ovarian maturation in four closely related species, two inhabiting temperate regions and the other two tropical areas of South America.
View Article and Find Full Text PDFBody size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster.
View Article and Find Full Text PDFUnder the preference-performance hypothesis, natural selection will favor females that choose oviposition sites that optimize the fitness of their offspring. Such a preference-performance relationship may entail important consequences mainly on fitness-related traits. We used the well-characterized cactus-Drosophila system to investigate the reproductive capacity in the pair of sibling species D.
View Article and Find Full Text PDFDevelopmental conservation among related species is a common generalization known as von Baer's third law and implies that early stages of development are the most refractory to change. The "hourglass model" is an alternative view that proposes that middle stages are the most constrained during development. To investigate this issue, we undertook a genomic approach and provide insights into how natural selection operates on genes expressed during the first 24 h of Drosophila ontogeny in the six species of the melanogaster group for which whole genome sequences are available.
View Article and Find Full Text PDFUnderstanding the genetic architecture of any quantitative trait requires identifying the genes involved in its expression in different environmental conditions. This goal can be achieved by mutagenesis screens in genetically tractable model organisms such as Drosophila melanogaster. Temperature during ontogenesis is an important environmental factor affecting development and phenotypic variation in holometabolous insects.
View Article and Find Full Text PDFBackground: The Drosophila wing represents a particularly appropriate model to investigate the developmental control of phenotypic variation. Previous studies which aimed to identify candidate genes for wing morphology demonstrated that the genetic basis of wing shape variation in D. melanogaster is composed of numerous genetic factors causing small, additive effects.
View Article and Find Full Text PDFDifferent hypotheses attempt to explain how different stages of organisms with complex life cycles respond to environmental changes. Most studies have focused at the among-species level showing similar responses to temperature throughout ontogeny. However, there is no agreement about the pattern expected at the intraspecific scale where a strong selective effect is expected.
View Article and Find Full Text PDFBackground: Previously, we have shown there is clinal variation for egg-to-adult developmental time along geographic gradients in Drosophila melanogaster. Further, we also have identified mutations in genes involved in metabolic and neurogenic pathways that affect development time (heterochronic genes). However, we do not know whether these loci affect variation in developmental time in natural populations.
View Article and Find Full Text PDFBackground: Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated.
View Article and Find Full Text PDF