The flat bands in magic-angle twisted bilayer graphene (MATBG) provide an especially rich arena to investigate interaction-driven ground states. While progress has been made in identifying the correlated insulators and their excitations at commensurate moiré filling factors, the spin-valley polarizations of the topological states that emerge at high magnetic field remain unknown. Here we introduce a technique based on twist-decoupled van der Waals layers that enables measurement of their electronic band structure and-by studying the backscattering between counter-propagating edge states-the determination of the relative spin polarization of their edge modes.
View Article and Find Full Text PDFThe intense interest in triplet superconductivity partly stems from theoretical predictions of exotic excitations such as non-Abelian Majorana modes, chiral supercurrents and half-quantum vortices. However, fundamentally new and unexpected states may emerge when triplet superconductivity appears in a strongly correlated system. Here we use scanning tunnelling microscopy to reveal an unusual charge-density-wave (CDW) order in the heavy-fermion triplet superconductor UTe (refs.
View Article and Find Full Text PDF