Publications by authors named "Julian Lucas"

The combination of ultra-long (UL) Oxford Nanopore Technologies (ONT) sequencing reads with long, accurate Pacific Bioscience (PacBio) High Fidelity (HiFi) reads has enabled the completion of a human genome and spurred similar efforts to complete the genomes of many other species. However, this approach for complete, "telomere-to-telomere" genome assembly relies on multiple sequencing platforms, limiting its accessibility. ONT "Duplex" sequencing reads, where both strands of the DNA are read to improve quality, promise high per-base accuracy.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate genome assemblies are crucial for biological research, but they often have errors due to the technologies used, necessitating polishing steps to correct these mistakes.
  • The new model, DeepPolisher, utilizes Pacbio HiFi read alignments and a method called PHARAOH to improve sequences by accurately addressing haplotypes and correcting errors in areas previously thought to be homozygous.
  • Testing DeepPolisher on 180 assemblies from the Human Pangenome Reference Consortium showed a significant reduction in assembly errors, achieving an average improvement of 54% in error reduction with a predicted Quality Value increase of 3.4.
View Article and Find Full Text PDF

Despite advances in long-read sequencing technologies, constructing a near telomere-to-telomere assembly is still computationally demanding. Here we present hifiasm (UL), an efficient de novo assembly algorithm combining multiple sequencing technologies to scale up population-wide near telomere-to-telomere assemblies. Applied to 22 human and two plant genomes, our algorithm produces better diploid assemblies at a cost of an order of magnitude lower than existing methods, and it also works with polyploid genomes.

View Article and Find Full Text PDF

Reference-free genome phasing is vital for understanding allele inheritance and the impact of single-molecule DNA variation on phenotypes. To achieve thorough phasing across homozygous or repetitive regions of the genome, long-read sequencing technologies are often used to perform phased de novo assembly. As a step toward reducing the cost and complexity of this type of analysis, we describe new methods for accurately phasing Oxford Nanopore Technologies (ONT) sequence data with the Shasta genome assembler and a modular tool for extending phasing to the chromosome scale called GFAse.

View Article and Find Full Text PDF
Article Synopsis
  • Human centromeres are challenging to sequence due to their large size and repetitive nature, limiting our understanding of their variation and evolutionary function.
  • Using long-read sequencing, researchers completely sequenced and assembled all centromeres from a second human genome, revealing a significant increase in genetic variation and size differences between centromeres.
  • Comparative analysis of centromeric sequences across species, including humans and great apes, highlights the rapid evolution of α-satellite DNA and suggests limited recombination between chromosome arms, aiding in studying centromeric DNA evolution.
View Article and Find Full Text PDF

The combination of ultra-long Oxford Nanopore (ONT) sequencing reads with long, accurate PacBio HiFi reads has enabled the completion of a human genome and spurred similar efforts to complete the genomes of many other species. However, this approach for complete, "telomere-to-telomere" genome assembly relies on multiple sequencing platforms, limiting its accessibility. ONT "Duplex" sequencing reads, where both strands of the DNA are read to improve quality, promise high per-base accuracy.

View Article and Find Full Text PDF

The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region.

View Article and Find Full Text PDF

We completely sequenced and assembled all centromeres from a second human genome and used two reference sets to benchmark genetic, epigenetic, and evolutionary variation within centromeres from a diversity panel of humans and apes. We find that centromere single-nucleotide variation can increase by up to 4.1-fold relative to other genomic regions, with the caveat that up to 45.

View Article and Find Full Text PDF

Despite recent advances in the length and the accuracy of long-read data, building haplotype-resolved genome assemblies from telomere to telomere still requires considerable computational resources. In this study, we present an efficient assembly algorithm that combines multiple sequencing technologies to scale up population-wide telomere-to-telomere assemblies. By utilizing twenty-two human and two plant genomes, we demonstrate that our algorithm is around an order of magnitude cheaper than existing methods, while producing better diploid and haploid assemblies.

View Article and Find Full Text PDF

Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels.

View Article and Find Full Text PDF

Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data. Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions. We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.

View Article and Find Full Text PDF

As a step towards simplifying and reducing the cost of haplotype resolved assembly, we describe new methods for accurately phasing nanopore data with the Shasta genome assembler and a modular tool for extending phasing to the chromosome scale called GFAse. We test using new variants of Oxford Nanopore Technologies' (ONT) PromethION sequencing, including those using proximity ligation and show that newer, higher accuracy ONT reads substantially improve assembly quality.

View Article and Find Full Text PDF

The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome.

View Article and Find Full Text PDF

The human reference genome is the most widely used resource in human genetics and is due for a major update. Its current structure is a linear composite of merged haplotypes from more than 20 people, with a single individual comprising most of the sequence. It contains biases and errors within a framework that does not represent global human genomic variation.

View Article and Find Full Text PDF

Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.

View Article and Find Full Text PDF

Background And Aims: There is a lack of convenient, sensitive, noninvasive strategies for screening and surveillance for colorectal neoplasia. An assay combining the results of circulating epithelial cells (CECs) and somatic mutations of cell-free DNA adjusting for age/sex using a unique algorithm is evaluated in patients requiring colonoscopy.

Methods: A prospective single-site 458-subject study (asymptomatic: 43% screening/43% surveillance, enriched with 65 symptomatic subjects undergoing colonoscopy) was conducted.

View Article and Find Full Text PDF

Introduction: Comprehensive genetic cancer profiling using circulating tumor DNA has enabled the detection of National Comprehensive Cancer Network (NCCN) guideline-recommended somatic alterations from a single, non-invasive blood draw. However, reliably detecting somatic variants at low variant allele fractions (VAFs) remains a challenge for next-generation sequencing (NGS)-based tests. We have developed the single-molecule sequencing (SMSEQ) platform to address these challenges.

View Article and Find Full Text PDF

Forty years of classical biochemical analysis have identified the molecular players involved in initiation of transcription by eukaryotic RNA polymerase II (Pol II) and largely assigned their functions. However, a dynamic picture of Pol II transcription initiation and an understanding of the mechanisms of its regulation have remained elusive due in part to inherent limitations of conventional ensemble biochemistry. Here we have begun to dissect promoter-specific transcription initiation directed by a reconstituted human Pol II system at single-molecule resolution using fluorescence video-microscopy.

View Article and Find Full Text PDF