Fusion protein technologies improve the expression and purification of recombinant proteins, but the removal of the tags involved requires specific proteases. The circularly permuted caspase-2 (cpCasp2) with its specific cleavage site, efficiently generates the untagged protein. While cleavage with cpCasp2 is possible before all 20 proteinogenic amino acids, cleavage before valine, leucine, isoleucine, aspartate and glutamate suffers from slow, and before proline extremely slow, turnover.
View Article and Find Full Text PDFFusion protein technologies to facilitate soluble expression, detection, or subsequent affinity purification in are widely used but may also be associated with negative consequences. Although commonly employed solubility tags have a positive influence on titers, their large molecular mass inherently results in stochiometric losses of product yield. Furthermore, the introduction of affinity tags, especially the polyhistidine tag, has been associated with undesirable changes in expression levels.
View Article and Find Full Text PDFCaspase-2 is the most specific protease of all caspases and therefore highly suitable as tag removal enzyme creating an authentic N-terminus of overexpressed tagged proteins of interest. The wild type human caspase-2 is a dimer of heterodimers generated by autocatalytic processing which is required for its enzymatic activity. We designed a circularly permuted caspase-2 (cpCasp2) to overcome the drawback of complex recombinant expression, purification and activation, cpCasp2 was constitutively active and expressed as a single chain protein.
View Article and Find Full Text PDF