Introduction: We introduce a bio-inspired navigation system for a robot to guide a social agent to a target location while avoiding static and dynamic obstacles. Robot navigation can be accomplished through a model of ring attractor neural networks. This connectivity pattern between neurons enables the generation of stable activity patterns that can represent continuous variables such as heading direction or position.
View Article and Find Full Text PDFThe aim of this work is to propose bio-inspired neural networks for decision-making mechanisms and modulation of motor control of an automaton. In this work, we have adapted and applied cortical synaptic circuits, such as short-term memory circuits, winner-take-all (WTA) class competitive neural networks, modulation neural networks, and nonlinear oscillation circuits, in order to make the automaton able to avoid obstacles and explore simulated and real environments. The performance achieved by using biologically inspired neural networks to solve the task at hand is similar to that of several works mentioned in the specialized literature.
View Article and Find Full Text PDFWe propose a mathematical model of a continuous attractor network that controls social behaviors. The model is examined with bifurcation analysis and computer simulations. The results show that the model exhibits stable steady states and thresholds for steady state transitions corresponding to some experimentally observed behaviors, such as aggression control.
View Article and Find Full Text PDF