Publications by authors named "Julian Heuberger"

Article Synopsis
  • - The study focuses on how intestinal epithelial cells regulate immune responses and maintain gut barrier integrity, linking dysfunction to inflammatory bowel diseases.
  • - Researchers examined the role of Interleukin (IL)-37, known for its anti-inflammatory properties, in both mouse and human intestinal organoids, noting its effects on inflammatory cytokine responses and tight junction protein expression.
  • - Results indicated that while IL-37 did not significantly reduce inflammation in murine organoids, its expression appeared to play a protective role linked to immune cells in the gut, suggesting a complex mechanism at play in intestinal inflammation.
View Article and Find Full Text PDF

The cellular organization of gastrointestinal crypts is orchestrated by different cells of the stromal niche but available in vitro models fail to fully recapitulate the interplay between epithelium and stroma. Here, we establish a colon assembloid system comprising the epithelium and diverse stromal cell subtypes. These assembloids recapitulate the development of mature crypts resembling in vivo cellular diversity and organization, including maintenance of a stem/progenitor cell compartment in the base and their maturation into secretory/absorptive cell types.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the stomach corpus epithelium, which consists of glands and pits, and explores how R-spondin 3 (RSPO3) regulates cell behavior and differentiation in this area.
  • RSPO3 promotes the differentiation of secretory cells into parietal and chief cells while its absence leads to the development of pit cells; high levels of RSPO3 are needed to initiate a regenerative response after cell loss.
  • However, during chronic Helicobacter pylori infection, RSPO3-driven regeneration results in excessive gland growth and increased risk of premalignant changes.
View Article and Find Full Text PDF
Article Synopsis
  • Helicobacter pylori is a pathogen that causes chronic gastritis by colonizing deep in the stomach, leading to increased R-spondin 3 (Rspo3) signaling and gland hyperplasia.
  • Lgr4 plays a crucial role in regulating Lgr5 expression, necessary for H. pylori-induced hyperplasia and inflammation, while Lgr5 alone does not drive this process.
  • R-spondin signaling through Lgr4 enhances stem cell proliferation and activates NF-κB, linking epithelial stem cell behavior with inflammatory responses during H. pylori infection.
View Article and Find Full Text PDF

Helicobacter pylori causes gastric inflammation, gland hyperplasia and is linked to gastric cancer. Here, we studied the interplay between gastric epithelial stem cells and their stromal niche under homeostasis and upon H. pylori infection.

View Article and Find Full Text PDF

Differentiation and lineage specification are controlled by cooperation of growth factor signalling. The involvement of epigenetic regulators in lineage specification remains largely elusive. Here, we show that the histone methyltransferase Mll1 prevents intestinal progenitor cells from differentiation, whereas it is also involved in secretory lineage specification of Paneth and goblet cells.

View Article and Find Full Text PDF

Epigenetic mechanisms are gatekeepers for the gene expression patterns that establish and maintain cellular identity in mammalian development, stem cells and adult homeostasis. Amongst many epigenetic marks, methylation of histone 3 lysine 4 (H3K4) is one of the most widely conserved and occupies a central position in gene expression. Mixed lineage leukemia 1 (MLL1/KMT2A) is the founding mammalian H3K4 methyltransferase.

View Article and Find Full Text PDF

Although the role of the transcription factor NF-κB in intestinal inflammation and tumor formation has been investigated extensively, a physiological function of NF-κB in sustaining intestinal epithelial homeostasis beyond inflammation has not been demonstrated. Using NF-κB reporter mice, we detected strong NF-κB activity in Paneth cells, in '+4/+5' secretory progenitors and in scattered Lgr5+ crypt base columnar stem cells of small intestinal (SI) crypts. To examine NF-κB functions in SI epithelial self-renewal, mice or SI crypt organoids ('mini-guts') with ubiquitously suppressed NF-κB activity were used.

View Article and Find Full Text PDF

Specified intestinal epithelial cells reprogram and contribute to the regeneration and renewal of the epithelium upon injury. Mutations that deregulate such renewal processes may contribute to tumorigenesis. Using intestinal organoids, we show that concomitant activation of Notch signaling and ablation of p53 induce a highly proliferative and regenerative cell state, which is associated with increased levels of Yap and the histone methyltransferase Mll1.

View Article and Find Full Text PDF

Genotoxic colibactin-producing pks+ Escherichia coli induce DNA double-strand breaks, mutations, and promote tumor development in mouse models of colorectal cancer (CRC). Colibactin's distinct mutational signature is reflected in human CRC, suggesting a causal link. Here, we investigate its transformation potential using organoids from primary murine colon epithelial cells.

View Article and Find Full Text PDF

SARS-CoV-2, the agent that causes COVID-19, invades epithelial cells, including those of the respiratory and gastrointestinal mucosa, using angiotensin-converting enzyme-2 (ACE2) as a receptor. Subsequent inflammation can promote rapid virus clearance, but severe cases of COVID-19 are characterized by an inefficient immune response that fails to clear the infection. Using primary epithelial organoids from human colon, we explored how the central antiviral mediator IFN-γ, which is elevated in COVID-19, affects epithelial cell differentiation, ACE2 expression, and susceptibility to infection with SARS-CoV-2.

View Article and Find Full Text PDF

Wnt/β-catenin signaling is crucial for intestinal carcinogenesis and the maintenance of intestinal cancer stem cells. Here we identify the histone methyltransferase Mll1 as a regulator of Wnt-driven intestinal cancer. Mll1 is highly expressed in Lgr5 stem cells and human colon carcinomas with increased nuclear β-catenin.

View Article and Find Full Text PDF

We identified a regulatory system that acts downstream of Wnt/β-catenin signaling in salivary gland and head and neck carcinomas. We show in a mouse tumor model of K14-Cre-induced Wnt/β-catenin gain-of-function and Bmpr1a loss-of-function mutations that tumor-propagating cells exhibit increased Mll1 activity and genome-wide increased H3K4 tri-methylation at promoters. Null mutations of Mll1 in tumor mice and in xenotransplanted human head and neck tumors resulted in loss of self-renewal of tumor-propagating cells and in block of tumor formation but did not alter normal tissue homeostasis.

View Article and Find Full Text PDF

We explored the connection between C/EBPα (CCAAT/enhancer-binding protein α) and Wnt signaling in gut homeostasis and carcinogenesis. C/EBPα was expressed in human and murine intestinal epithelia in the transit-amplifying region of the crypts and was absent in intestinal stem cells and Paneth cells with activated Wnt signaling. In human colorectal cancer and murine APC polyps, C/EBPα was absent in the nuclear β-catenin-positive tumor cells.

View Article and Find Full Text PDF

Ubiquitylation regulates signaling pathways critical for cancer development and, in many cases, targets proteins for degradation. Here, we report that ubiquitylation by RNF4 stabilizes otherwise short-lived oncogenic transcription factors, including β-catenin, Myc, c-Jun, and the Notch intracellular-domain (N-ICD) protein. RNF4 enhances the transcriptional activity of these factors, as well as Wnt- and Notch-dependent gene expression.

View Article and Find Full Text PDF

In the development of the mammalian intestine, Notch and Wnt/β-catenin signals control stem cell maintenance and their differentiation into absorptive and secretory cells. Mechanisms that regulate differentiation of progenitors into the three secretory lineages, goblet, paneth, or enteroendocrine cells, are not fully understood. Using conditional mutagenesis in mice, we observed that Shp2-mediated MAPK signaling determines the choice between paneth and goblet cell fates and also affects stem cells, which express the leucine-rich repeat-containing receptor 5 (Lgr5).

View Article and Find Full Text PDF

The tyrosine phosphatase Shp2 acts downstream of various growth factors, hormones or cytokine receptors. Mutations of the Shp2 gene are associated with several human diseases. Here we have ablated Shp2 in the developing kidneys of mice, using the ureteric bud epithelium-specific Hoxb7/Cre.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition is essential in both embryonic development and the progression of carcinomas. Wnt signaling and cadherin-mediated adhesion have been implicated in both processes; clarifying their role will depend on linking them to rearrangements of cellular structure and behavior. beta-Catenin is an essential molecule both in cadherin-mediated cell adhesion and in canonical Wnt signaling.

View Article and Find Full Text PDF