Treatment options for COVID-19 remain limited. Here, we report the optimization of an siRNA targeting the highly conserved leader region of SARS-CoV-2. The siRNA was rendered nuclease resistant by the introduction of modified nucleotides without loss of activity.
View Article and Find Full Text PDFInhibitors of bromodomain and extra-terminal proteins (iBETs), including JQ-1, have been suggested as potential prophylactics against SARS-CoV-2 infection. However, molecular mechanisms underlying JQ-1-mediated antiviral activity and its susceptibility to viral subversion remain incompletely understood. Pretreatment of cells with iBETs inhibited infection by SARS-CoV-2 variants and SARS-CoV, but not MERS-CoV.
View Article and Find Full Text PDFCoronaviruses (CoVs) are common among humans and many animals, causing respiratory or gastrointestinal diseases. Currently, only a few antiviral drugs against CoVs are available. Especially for SARS-CoV-2, new compounds for treatment of COVID-19 are urgently needed.
View Article and Find Full Text PDF