Publications by authors named "Julian Garrido"

Article Synopsis
  • * Four hybrid silica xerogels were created using tetraethoxysilane and different organochlorinated triethoxysilane precursors, all maintaining a constant 10% organochlorinated content but varying in the organic group’s structure.
  • * Thermal decomposition analysis identified three distinct pyrolysis events and clarified reaction pathways, showing that these processes are significantly influenced by the type of organic group present.
View Article and Find Full Text PDF

The interest in new materials with specific properties has increased because they are essential for the environmental and technological needs of our society. Among them, silica hybrid xerogels have emerged as promising candidates due to their simple preparation and tunability: when they are synthesised, depending on the organic precursor and its concentration, their properties can be modulated, and thus, it is possible to prepare materials with à la carte porosity and surface chemistry. This research aims to design two new series of silica hybrid xerogels by co-condensation of tetraethoxysilane (TEOS) with triethoxy(-tolyl)silane (MPhTEOS) or 1,4-bis(triethoxysilyl)benzene (Ph(TEOS) and to determine their chemical and textural properties based on a variety of characterisation techniques (FT-IR, Si NMR, X-ray diffraction and N, CO and water vapour adsorption, among others).

View Article and Find Full Text PDF

Hybrid magnetic nanoparticles made up of an iron oxide, FeO, core and a mesoporous SiO shell with high magnetization and a large surface area were proposed as an efficient drug delivery platform. The core/shell structure was synthesized by two seed-mediated growth steps combining solvothermal and sol-gel approaches and using organic molecules as a porous scaffolding template. The system presents a mean particle diameter of 30(5) nm (9 nm magnetic core diameter and 10 nm silica shell thickness) with superparamagnetic behavior, saturation magnetization of 32 emu/g, and a significant AC magnetic-field-induced heating response (SAR = 63 W/g, measured at an amplitude of 400 Oe and a frequency of 307 kHz).

View Article and Find Full Text PDF

The search for new materials with improved properties for advanced applications is, nowadays, one of the most relevant and booming fields for scientists due to the environmental and technological needs of our society. Within this demand, hybrid siliceous materials, made out of organic and inorganic species (ORMOSILs), have emerged as an alternative with endless chemical and textural possibilities by incorporating in their structure the properties of inorganic compounds (i.e.

View Article and Find Full Text PDF

The properties of hybrid silica xerogels obtained by the sol-gel method are highly dependent on the precursor and the synthesis conditions. This study examines the influence of organic substituents of the precursor on the sol-gel process and determines the structure of the final materials in xerogels containing tetraethyl orthosilicate (TEOS) and alkyltriethoxysilane or chloroalkyltriethoxysilane at different molar percentages (RTEOS and ClRTEOS, R = methyl [M], ethyl [E], or propyl [P]). The intermolecular forces exerted by the organic moiety and the chlorine atom of the precursors were elucidated by comparing the sol-gel process between alkyl and chloroalkyl series.

View Article and Find Full Text PDF

Hybrid silica xerogels combine the properties of organic and inorganic components in the same material, making them highly promising and versatile candidates for multiple applications. They can be tailored for specific purposes through chemical modifications, and the consequent changes in their structures warrant in-depth investigation. We describe the synthesis of three new series of organochlorinated xerogels prepared by co-condensation of tetraethyl orthosilicate (TEOS) and chloroalkyltriethoxysilane (ClRTEOS; R = methyl [M], ethyl [E], or propyl [P]) at different molar ratios.

View Article and Find Full Text PDF

A "box-in-box" cocultivation system was used to investigate plant responses to microbial volatile compounds (VCs) and to evaluate the contributions of organic and inorganic VCs (VOCs and VICs, respectively) to these responses. Arabidopsis plants were exposed to VCs emitted by adjacent Alternaria alternata and Penicillium aurantiogriseum cultures, with and without charcoal filtration. No VOCs were detected in the headspace of growth chambers containing fungal cultures with charcoal filters.

View Article and Find Full Text PDF

We investigated the response of three fiber optic sensing elements prepared at pH 10 from phenyltriethoxysilane (PhTEOS) and tetraethylsilane (TEOS) mixtures with 30, 40, and 50% PhTEOS in the silicon precursor mixture. The sensing elements are referred to as Ph30, Ph40 and Ph50, respectively. The films were synthesized by the sol-gel method and affixed to the end of optical fibers by the dip-coating technique.

View Article and Find Full Text PDF

This research examines the evolution of nuclear technology in Spain from the early years of the Franco dictatorship to the global financial crisis and technology's influence on Spanish culture. To this end, we take a sociological perspective, with science culture and social perceptions of risk in knowledge societies serving as the two elements of focus in this work. In this sense, this article analyses the transformation of social relationships in light of technological changes.

View Article and Find Full Text PDF

Background: One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment.

View Article and Find Full Text PDF

4-Ethylphenol (4-EP) and 4-ethylguaiacol (4-EG) are the identified volatile phenolic compounds associated with off-odour in wine. The aim of this work was to investigate the kinetics and thermodynamics of sorption of 4-EG and 4-EP by yeast cell walls, using a synthetic wine. Results showed that the sorption capacity by yeast cell walls for 4-EG was greater than that for 4-EP and that the kinetics of 4-EG were quicker, although the unions were weaker than in the case of 4-EP.

View Article and Find Full Text PDF

Fiber-optic sensors are increasingly used for the determination of volatile organic compounds (VOCs) in air matrices. This paper provides experimental results on the sensitivity of a fiber-optic sensor that uses a film of a porous silica xerogel as the sensing element. This film was synthesized by the sol-gel process and affixed to the end of the optical fiber by the dip-coating technique.

View Article and Find Full Text PDF

In this work, the role of nanoparticle surface charge in surface-enhanced Raman scattering (SERS) is examined for the common case of measurements made in colloidal solutions of Ag and Au. Average SERS intensities obtained for several analytes (salicylic acid, pyridine, and 2-naphthalenethiol) on Ag and Au colloids are correlated with the pH and zeta potential (zeta) values of the nanoparticle solutions from which they were recorded. The consequence of the electrostatic interaction between the analyte and the metallic nanoparticle is stressed.

View Article and Find Full Text PDF

Brown humic acids (BHAs) constitute the most polar and soluble fraction of humic acids. Their colloidal character and their high number of functional surface groups justify their higher reactivity as against metallic cations with respect to other humic fractions (i.e.

View Article and Find Full Text PDF

Illite clays are known to have a strong affinity for metallic pollutants in the environment and can be applied as low-cost adsorbents for industrial waste treatment. A crucial factor in the development of such applications, however, is the understanding of the chemical, mineralogical, and colloidal properties of these clays. It is also important to understand the mechanisms involved in the surface adsorption of metals by these adsorbants.

View Article and Find Full Text PDF

Micro-Raman spectroscopy, infrared absorption microspectroscopy, and AFM images of nano- or microsized micelles formed by fulvic acid (FA) solutions, prepared at different pHs, and cast on glass slides or gold island films, are reported. FA films cast on gold islands are characterized by surface-enhanced infrared absorption (SEIRA), surface-enhanced infrared reflection absorption, and surface-enhanced Raman scattering (SERS). Based on spectral evidence, it is expected that the chemisorption of FA on gold island films takes place through thiol groups, which become more active as pH increases.

View Article and Find Full Text PDF