Publications by authors named "Julian Down"

Article Synopsis
  • HSCT is a potentially curative treatment for blood and immune diseases but often involves harmful chemotherapy or radiation, leading to serious side effects like infections and secondary cancers.
  • Research has shown that using targeted monoclonal antibodies (mAbs) against αCD117 can offer a safer alternative for HSCT preparations, with promising results in SCID mouse models.
  • The study identifies that the ACK2 mAb effectively inhibits HSC proliferation and enhances engraftment after HSCT, and when combined with the αCD47 mAb, it significantly improves outcomes in wildtype mouse models.
View Article and Find Full Text PDF

Animal studies are needed that best simulate a large-scale, inhomogeneous body exposure after a radiological or nuclear incident and that provides a platform for future development of medical countermeasures. A partial-body irradiation (PBI) model using 137Cs gamma rays with hind limb (tibia) shielding was developed and assessed for the sequalae of radiation injuries to gastrointestinal tract, bone marrow (BM) and lung and among different genetic mouse strains (C57BL/6J, C57L/J, CBA/J and FVB/NJ). In this case, a marginal level of BM shielding (∼2%) provided adequate protection against lethality from infection and hemorrhage and enabled escalation of radiation doses with evaluation of both acute and delayed radiation syndromes.

View Article and Find Full Text PDF

Background: Genetically engineered mouse models (GEMMs) of cancer are powerful tools to study mechanisms of disease progression and therapy response, yet little is known about how these models respond to multimodality therapy used in patients. Radiation therapy (RT) is frequently used to treat localized cancers with curative intent, delay progression of oligometastases, and palliate symptoms of metastatic disease.

Methods: Here we report the development, testing, and validation of a platform to immobilize and target tumors in mice with stereotactic ablative RT (SART).

View Article and Find Full Text PDF

The objective of the current study was to establish a mouse model of acute radiation syndrome (ARS) after total-body irradiation with 2.5% bone marrow sparing (TBI/BM2.5) that progressed to the delayed effects of acute radiation exposure, specifically pneumonitis and/or pulmonary fibrosis (DEARE-lung), in animals surviving longer than 60 days.

View Article and Find Full Text PDF

Many studies in biomedical research and various allied fields, in which cells or laboratory animals are exposed to radiation, rely on adequate radiation dose standardization for reproducibility and comparability of biological data. Due to increasing concerns regarding international terrorism, the use of radioactive isotopes has recently been met with enhanced security measures. Thus, a growing number of researchers have considered transferring their studies from gamma-ray to kilovoltage X-ray irradiators.

View Article and Find Full Text PDF

Although gene transfer to hematopoietic stem cells (HSCs) has shown therapeutic efficacy in recent trials for several individuals with inherited disorders, transduction incompleteness of the HSC population remains a hurdle to yield a cure for all patients with reasonably low integrated vector numbers. In previous attempts at HSC selection, massive loss of transduced HSCs, contamination with non-transduced cells, or lack of applicability to large cell populations has rendered the procedures out of reach for human applications. Here, we fused codon-optimized puromycin N-acetyltransferase to herpes simplex virus thymidine kinase.

View Article and Find Full Text PDF

Within this millennium there has been resurgence in funding and research dealing with animal models of radiation-induced lung injury to identify and establish predictive biomarkers and effective mitigating agents that are applicable to humans. Most have been performed on mice but there needs to be assurance that the emphasis on such models is not misplaced. We therefore considered it timely to perform a comprehensive appraisal of the literature dealing with radiation lung injury of mice and to critically evaluate the validity and clinical relevance of the research.

View Article and Find Full Text PDF

To ensure reliability and reproducibility of radiobiological data, it is necessary to standardize dosimetry practices across all research institutions. The photoelectric effect predominates over other interactions at low energy and in high atomic number materials such as bone, which can lead to increased dose deposition in soft tissue adjacent to mineral bone due to secondary radiation particles. This may produce radiation effects that deviate from higher energy photon irradiation that best model exposure from clinical radiotherapy or nuclear incidences.

View Article and Find Full Text PDF

To study the mechanisms of death following a single lethal dose of thoracic radiation, WAG/RijCmcr (Wistar) rats were treated with 15 Gy to the whole thorax and followed until they were morbid or sacrificed for invasive assays at 6 weeks. Lung function was assessed by breathing rate and arterial oxygen saturation. Lung structure was evaluated histologically.

View Article and Find Full Text PDF

Approval of radiation countermeasures through the FDA Animal Rule requires pivotal efficacy screening in one or more species that are expected to react with a response similar to humans (21 C.F.R.

View Article and Find Full Text PDF

The role of mast cell infiltrates in the pathology of radiation damage to the lung has been a subject of continuing investigation over the past four decades. This has been accompanied by a number of proposals as to how mast cells and the secretory products thereof participate in the generation of acute inflammation (pneumonitis) and the chronic process of collagen deposition (fibrosis). An additional pathophysiology examines the possible connection between mast cell hyperplasia and pulmonary hypertension through the release of vasoactive mediators.

View Article and Find Full Text PDF

The purpose of preclinical murine model development is to establish that the pathophysiological outcome of the rodent model of radiation-induced lung injury is sufficiently representative of the anticipated pulmonary response in the human population. This objective is based on concerns that the C57BL/6J strain may not be the most appropriate preclinical model of lethal radiation lung injury in humans. In this study, the authors assessed this issue by evaluating the relationship between morbidity (pulmonary function, histopathologic damage) and mortality among three strains of mice: C57BL/6J, CBA/J, and C57L/J.

View Article and Find Full Text PDF

A lentiviral vector encoding β-globin flanked by insulator elements has been used to treat β-thalassemia (β-Thal) successfully in one human subject. However, a clonal expansion was observed after integration in the HMGA2 locus, raising the question of how commonly lentiviral integration would be associated with possible insertional activation. Here, we report correcting β-Thal in a murine model using the same vector and a busulfan-conditioning regimen, allowing us to investigate efficacy and clonal evolution at 9.

View Article and Find Full Text PDF

The human lung is among the most sensitive and critical tissues of concern in localized and systemic radiation exposures, and it is a subject of active preclinical research for evaluating mitigating therapies within the radiation countermeasures program. Our previous study comparing C57BL/6, CBA and C57L mice after whole-thorax irradiation pointed to the problems of late pleural effusions that prevented the full development of lung injury in C57BL/6 mice and suggested that the CBA and C57L strains are more favorable for modeling lung injury in humans (Jackson et al., Radiat.

View Article and Find Full Text PDF

The β-haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of β-thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound β(E)/β(0)-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas.

View Article and Find Full Text PDF

Pulmonary tissue is sensitive and often treatment-limiting in patients exposed to total-body irradiation (TBI) in preparation for hematopoietic stem cell transplantation. Many rodent strains, however, exhibit a relatively high resistance to radiation lung damage that often requires extra radiation doses to be delivered locally to the thorax to generate significant levels of pulmonary injury. The present study compared the effects of TBI and bone marrow transplantation (BMT) on two mouse strains that are known to differ in lung radiosensitivity after whole-thorax irradiation, namely the relatively resistant CBA mice and the sensitive C57L mice.

View Article and Find Full Text PDF

The mouse has been used extensively to model radiation injury to the lung, a major dose-limiting organ for radiotherapy. Substantial differences in the timing and sensitivity of this tissue between mouse strains have been reported, with some strains, including C57BL/6, being designated as "fibrosis-prone". Pleural effusions have also been reported to be a prominent problem in many mouse strains, but it remains unclear how this affects the lung function and survival of the standard C57BL/6 mouse.

View Article and Find Full Text PDF

The interaction of stem cells with their bone marrow microenvironment is a critical process in maintaining normal hematopoiesis. We applied an approach to resolve the spatial organization that underlies these interactions by evaluating the distribution of hematopoietic cell subsets along an in vivo Hoechst 33342 (Ho) dye perfusion gradient. Cells isolated from different bone marrow regions according to Ho fluorescence intensity contained the highest concentration of hematopoietic stem cell (HSC) activity in the lowest end of the Ho gradient (i.

View Article and Find Full Text PDF

Objective: We previously observed high levels (>40%) of multilineage hematopoietic cell chimerism following spleen transplantation across full MHC barriers in immunosuppressed miniature swine. We therefore investigated the spleen as a source of hematopoietic progenitor cells (HPCs).

Materials And Methods: Specific cell-surface markers were used to identify HPCs in the spleen and bone marrow (BM) of young adult (n = 15) and fetal (n = 9) miniature swine by flow cytometry.

View Article and Find Full Text PDF

Treosulfan (L-threitol-1,4-bismethanesulfonate) is an alkylating agent with routine clinical application in the treatment of ovarian cancer. In this murine study we show that this drug also has the ability to deplete primitive hematopoietic stem cells in a dose-dependent manner as determined by the cobblestone area-forming cell assay and is similar to its parent compound busulfan. Because busulfan is frequently used as part of the conditioning regimen before stem cell transplantation, we investigated an alternative nonmyeloablative protocol in an allogeneic bone marrow transplantation model in which low-dose treosulfan was added to an immune-suppressive regimen consisting of T cell-depleting antibodies, fludarabine, and thymic irradiation.

View Article and Find Full Text PDF

Murine mixed hematopoietic chimerism can be achieved following nonmyeloablative conditioning with cyclophosphamide, T cell-depleting monoclonal antibodies, and thymic irradiation. Donor lymphocyte infusions (DLIs) 35 days after bone marrow transplantation (BMT) convert mixed to full donor chimerism and mediate graft-versus-lymphoma effects without graft-versus-host disease. We evaluated the role of T-cell subsets in DLIs in converting mixed to full donor chimerism in a fully major histocompatibility complex-mismatched strain combination.

View Article and Find Full Text PDF

Our laboratory has previously reported a nonmyelosuppressive preparative regimen for hematopoietic cell transplantation that leads to mixed chimerism and allograft tolerance in miniature swine across minor and major histocompatibility disparities. Stable chimerism persisted in most of these animals but was restricted to T cells and confined to peripheral blood. Because of the importance of myeloid and erythroid progenitors for the treatment of hematologic disorders, the objective of this study was to assess whether such cells existed in the bone marrow of these lymphoid chimeras as an indication of functional engraftment.

View Article and Find Full Text PDF

Objective: A marker for hematopoietic stem cells (HSCs) of pigs, which are considered to be the most suitable donors for clinical xenotransplantation, has not yet been identified. In this study, we examined the HSC activity of porcine c-kit+ bone marrow cells (BMCs).

Methods: The HSC activity of porcine c-kit+ BMCs was evaluated both in vitro using colony-forming unit (CFU) and cobblestone area-forming cell (CAFC) assays and in vivo in nonobese diabetic/severe combined immunodeficiency transgenic (NOD/SCID-Tg) mice carrying porcine cytokine transgenes.

View Article and Find Full Text PDF

We have investigated whether a state of tolerance toward EGFP-expressing skin tissue can be induced by prior establishment of EGFP molecular chimerism by transplant of gene-transduced bone marrow in mice. Irradiated (10 Gy) C57BL/6J mice were transplanted with bone marrow cells transduced with two different retroviral vectors encoding EGFP. EGFP-transduced, mock-transduced, and age-matched control mice received skin grafts from both C57BL/6 EGFP-transgenic (B6-EGFP.

View Article and Find Full Text PDF