Publications by authors named "Julian D C Jones"

We present an interferometric technique for measurement of the dispersion of birefringence in polarization-maintaining fibers. The approach yields measurements over a broad spectral range from analysis of single interferograms obtained in a tandem inteferometer. The technique is demonstrated to measure first-, second-, and third-order dispersion of the differential propagation constant, corresponding to differential group delay (DGD) and its dispersion to second order; measurements are immune to asymmetry in the interferomgram that is being processed.

View Article and Find Full Text PDF

Fiber delivery of 64.7 mJ laser pulses (approximately 6 ns duration) from a Q-switched Nd:YAG laser operating at 532 nm is demonstrated. A custom diffractive optical element was used to shape the laser beam and facilitate coupling into a linear fiber array.

View Article and Find Full Text PDF

Experimental modal analysis of multifrequency vibration requires a measurement system with appropriate temporal and spatial resolution to recover the mode shapes. To fully understand the vibration it is necessary to be able to measure not only the vibration amplitude but also the vibration phase. We describe a multipoint laser vibrometer that is capable of high spatial and temporal resolution with simultaneous measurement of 256 points along a line at up to 80 kHz.

View Article and Find Full Text PDF

We describe the use of arrayed waveguide gratings (AWGs) in the interrogation of fiber Bragg gratings (FBGs) for dynamic strain measurement. The ratiometric AWG output was calibrated in a static deflection experiment over a +/-200 microepsilon range. Dynamic strain measurement was demonstrated with a FBG in a conventional single-mode fiber mounted on the surface of a vibrating cantilever and on a piezoelectric actuator, giving a resolution of 0.

View Article and Find Full Text PDF

A digital speckle pattern interferometer based on a complementary metal-oxide semiconductor (CMOS) camera is described. The temporal evolution of dynamic deformation is measured using interframe phase stepping. The flexibility of the CMOS detector is used to identify regions of interest with full-field time-averaged measurements and then to interrogate those regions with time-resolved measurements sampled at up to 70 kHz.

View Article and Find Full Text PDF

Cavities have been laser ablated in the ends of single-mode optical fibers and sealed by aluminized polycarbonate diaphragms to produce Fabry-Perot pressure sensors. Both conventional fibers and novel, multicore fibers were used, demonstrating the possibility of producing compact arrays of sensors and multiple sensors on an individual fiber 125 microm in diameter. This high spatial resolution can be combined with high temporal resolution by simultaneously interrogating the sensors by using separate laser sources at three wavelengths.

View Article and Find Full Text PDF

Due to their capability for supporting high-peak powers, large-core hollow optical fibers may be used to deliver high-peak-power nanosecond pulses for the fluid flow measurement technique of particle image velocimetry [Meas. Sci. Technol.

View Article and Find Full Text PDF

We describe and characterize an experimental system to perform shape measurements on deformable objects using high-speed close-range photogrammetry. The eventual application is to extract the kinematics of several marked points on an insect wing during tethered and hovering flight. We investigate the performance of the system with a small number of views and determine an empirical relation between the mean pixel error of the optimization routine and the position error.

View Article and Find Full Text PDF

We have measured the optical phase sensitivity of fiber based on poly(methyl methacrylate) under near-single-mode conditions at 632.8 nm wavelength. The elongation sensitivity is 131 +/- 3 x 10(5) rad m(-1) and the temperature sensitivity is -212 +/- 26 rad m(-1) K(-1).

View Article and Find Full Text PDF

We demonstrate the sensitivity of Bragg gratings in a multicore fiber to transverse load. The Bragg peaks are split because of stress-induced birefringence, the magnitude of which depends upon the load and grating position relative to the load axis. Experiments show that a set of gratings in a four-core fiber can measure a load axis angle to +/- 5 degrees and a load magnitude to +/- 15 N m(-1) up to 2500 N m(-1).

View Article and Find Full Text PDF

Conduction welding offers an alternative to keyhole welding. Compared with keyhole welding, it is an intrinsically stable process because vaporization phenomena are minimal. However, as with keyhole welding, an on-line process-monitoring system is advantageous for quality assurance to maintain the required penetration depth, which in conduction welding is more sensitive to changes in heat sinking.

View Article and Find Full Text PDF

We report the delivery of high-energy nanosecond pulses (approximately 65 ns pulse width) from a high-repetition-rate (up to 100 kHz) Q-switched Nd:YAG laser through the fundamental mode of a hollow-core photonic crystal fiber (HC-PCF) at 1064 nm. The guided mode in the HC-PCF has a low overlap with the glass, allowing delivery of pulses with energies above those attainable with other fibers. Energies greater than 0.

View Article and Find Full Text PDF

Optical techniques for real-time full-penetration monitoring for Nd:YAG laser welding have been investigated. Coaxial light emission from the keyhole is imaged onto three photodiodes and a camera. We describe the spectral and statistical analyses from photodiode signals, which indicate the presence of a full penetration.

View Article and Find Full Text PDF

We describe a closed-loop control system ensuring full penetration in welding by controlling the focus position and power of a 4-kW Nd:YAG laser. A focus position monitoring system was developed based on the chromatic aberration of the focusing optics. With the laser power control system we can determine the degree of penetration by analyzing the keyhole image intensity profile.

View Article and Find Full Text PDF

We present a fiber interferometer for the simultaneous measurement of phase at multiple wavelengths from a single broadband femtosecond laser. Narrow-bandwidth fiber Bragg gratings isolate a particular frequency from the broad-bandwidth laser pulse produced. The multiwavelength phase data permit the unambiguous measurement range to be significantly increased compared with the wavelengths used in the interferometer.

View Article and Find Full Text PDF

We present experimental measurements of the peak splitting of the reflection spectra of fiber Bragg gratings as a result of birefringence induced by transverse loading of a multicore fiber. Measurements show that the splitting is a function of the applied load and the direction of the load relative to the azimuth of the fiber. A model for calculating the stress in the fiber that is due to an applied load is in good agreement with our experimental observations.

View Article and Find Full Text PDF

The curvature- or bend-sensing response of long-period gratings (LPGs) UV inscribed in D-shaped fiber has been investigated experimentally. Strong fiber-orientation dependence of the spectral response when such LPGs are subjected to bending at different directions has been observed and is shown to form the basis for a new class of single-device sensor with vector-sensing capability. Potential applications utilizing the linear response and unique bend-orientation characteristics of the devices are discussed.

View Article and Find Full Text PDF

We present a generalized frequency selection method for N-frequency interferometry to form an optimum geometric series at synthetic wavelengths. The absolute range that is measurable is bounded by the number of beat frequency operations, phase noise, and the number of wavelengths used to form the geometric series of synthetic wavelengths. Theoretical predictions are compared with experimental results from a full-field fringe projector.

View Article and Find Full Text PDF

We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70 degrees C to 80 degrees C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.

View Article and Find Full Text PDF

A major advantage of fiber-optic beam delivery in laser materials processing is the ability to guide the laser power to the location where it is needed, leaving the laser itself remote and protected from the process. This is of special importance if the processing is to be performed in a hazardous environment. Particular problems are faced by the nuclear industry where weld repair and surface treatment work are required inside radioactive installations.

View Article and Find Full Text PDF

A bundle of optical fibers was constructed to deliver Q-switched frequency-doubled Nd:YAG laser pulses for the purpose of particle image velocimetry. Data loss that is due to fiber speckle was reduced by ensuring that each fiber was different in length by more than the coherence length of the laser being delivered. Hence, their speckle patterns will overlap but not interfere, producing more even illumination that is shown to reduce data loss.

View Article and Find Full Text PDF

We describe a novel technique for measurement of absolute order of interference in multifrequency interferometry. An optimization criterion is introduced that leads to frequency selection formulations that are optimized with respect to the minimum number of frequencies required for achieving the maximum target dynamic range. The method is generalized to N frequencies and gives a definition of measurement reliability.

View Article and Find Full Text PDF

Any reliable automated production system must include process control and monitoring techniques. Two laser processing techniques potentially lending themselves to automation are percussion drilling and cutting. For drilling we investigate the performance of a modification of a nonintrusive optical focus control system we previously developed for laser welding, which exploits the chromatic aberrations of the processing optics to determine focal error.

View Article and Find Full Text PDF

Active homodyne feedback control can be used to stabilize an interferometer against unwanted phase drifts introduced by, for example, temperature gradients. The technique is commonly used in fiber-optic sensors to maintain the fiber at its most sensitive (quadrature) position. We describe an extension of the technique to introduce stabilized, pi/2-rad phase steps in a full-field interferometer.

View Article and Find Full Text PDF