Publications by authors named "Julian Cremer"

The generation of ligands that both are tailored to a given protein pocket and exhibit a range of desired chemical properties is a major challenge in structure-based drug design. Here, we propose an approach for the generation of 3D ligand structures using the equivariant diffusion model PILOT, combining pocket conditioning with a large-scale pre-training and property guidance. Its multi-objective trajectory-based importance sampling strategy is designed to direct the model towards molecules that not only exhibit desired characteristics such as increased binding affinity for a given protein pocket but also maintains high synthetic accessibility.

View Article and Find Full Text PDF

Predictive modeling of toxicity is a crucial step in the drug discovery pipeline. It can help filter out molecules with a high probability of failing in the early stages of de novo drug design. Thus, several machine learning (ML) models have been developed to predict the toxicity of molecules by combining classical ML techniques or deep neural networks with well-known molecular representations such as fingerprints or 2D graphs.

View Article and Find Full Text PDF

Nanoporous carbon nanomembranes (CNMs) created by self-assembled monolayers ideally combine a high water flux and precise ion selectivity for molecular separation and water desalination. However, their practical implementation is often challenged by the availability of large epitaxial substrates, limiting the membrane up-scaling. Here, we report a scalable synthesis of CNMs from poly(4-vinylbiphenyl) (PVBP) spin-coated on SiO/Si wafers.

View Article and Find Full Text PDF

The performance of plastic components in water-bearing parts of industrial and household appliances, often in the presence of harsh environments and elevated temperatures, critically relies on the mechanical and thermal polymer stability. In this light, the precise knowledge of aging properties of polymers formulated with dedicated antiaging additive packages as well as various fillers is crucial for long-time device warranty. We investigated and analysed the time-dependent, polymer-liquid interface aging of different industrial performance polypropylene samples in aqueous detergent solution at high temperatures (95 °C).

View Article and Find Full Text PDF

In this work, palladium-loaded smart membranes made by UV cross-linking of thermoresponsive microgels are prepared to obtain a reusable, catalytically active material which can, for example, be implemented in chemical reactors. The membranes are examined with respect to their coverage of a supporting mesh via atomic force microscopy measurements. Force indentation mapping was performed in the dried, collapsed state and in the swollen state in water to determine the Young modulus.

View Article and Find Full Text PDF

In the light of the SARS-CoV-2 pandemic and growing numbers of bacteria with resistance to antibiotics, the development of antimicrobial coatings is rising worldwide. Inorganic coatings are attractive because of low environmental leakage and wear resistance. Examples for coatings are hot metal dipping or physical vapor deposition of nanometer coatings.

View Article and Find Full Text PDF

Despite the prospects of intrinsically porous planar nanomaterials in separation applications, their synthesis on a large scale remains challenging. In particular, preparing water-selective carbon nanomembranes (CNMs) from self-assembled monolayers (SAMs) is limited by the cost of epitaxial metal substrates and molecular precursors with specific chemical functionalities. In this work, we present a facile fabrication of CNMs from polycyclic aromatic hydrocarbons (PAHs) that are drop-cast onto arbitrary supports, including foils and metalized films.

View Article and Find Full Text PDF

In this study we show a possibility to produce thermoresponsive, free-standing microgel membranes based on -isopropylacrylamide (NIPAM) and the UV-sensitive comonomer 2-hydroxy-4-(methacryloyloxy)benzophenone (HMABP). To influence the final network structure and functionality of the membranes, we use different cross-linkers in the microgel syntheses and characterize the resulting structural microgel properties and the swelling behavior by means of AFM, FTIR, and PCS measurements. Varying the cross-linker results in significant changes in the structure and swelling behavior of the individual microgels and has an influence on the incorporation of the comonomer, which is essential for subsequent photochemical membrane formation.

View Article and Find Full Text PDF