Background: Glioblastoma's infiltrative growth and heterogeneity are influenced by neural, molecular, genetic, and immunological factors, with the precise origin of these tumors remaining elusive. Neurogenic zones might serve as the tumor stem cells' nest, with tumors in contact with these zones exhibiting worse outcomes and more aggressive growth patterns. This study aimed to determine if these characteristics are reflected in advanced imaging, specifically diffusion and perfusion data.
View Article and Find Full Text PDFPurpose: Effective chemotherapeutical agents for the treatment of meningiomas are still lacking. Previous in-vitro analyses revealed efficacy of decitabine (DCT), a DNA methyltransferase (DNMT) inhibitor established in the treatment of leukemia, in a yet undefined subgroup of meningiomas.
Methods: Effects of DCT on proliferation and viability was analyzed in primary meningioma cells by immunofluorescence and MTT assays, and cases were classified as drug responders and non-responders.
Treatment of meningiomas refractory to surgery and irradiation is challenging and effective chemotherapies are still lacking. Recently, in vitro analyses revealed decitabine (DCT, 5-aza-2'-deoxycytidine) to be effective in high-grade meningiomas and, moreover, to induce hypomethylation of distinct oncogenes only sparsely described in meningiomas in vivo yet.Expression of the corresponding onco- and tumor suppressor genes TRIM58, FAM84B, ELOVL2, MAL2, LMO3, and DIO3 were analyzed and scored by immunohistochemical staining and RT-PCR in samples of 111 meningioma patients.
View Article and Find Full Text PDFObjective: Chemotherapeutic options for meningiomas refractory to surgery or irradiation are largely unknown. Human telomerase reverse transcriptase (hTERT) promoter methylation with subsequent TERT expression and telomerase activity, key features in oncogenesis, are found in most high-grade meningiomas. Therefore, the authors investigated the impact of the demethylating agent decitabine (5-aza-2'-deoxycytidine) on survival and DNA methylation in meningioma cells.
View Article and Find Full Text PDF