Publications by authors named "Julian C W Willis"

DddA-derived cytosine base editors (DdCBEs) use programmable DNA-binding TALE repeat arrays, rather than CRISPR proteins, a split double-stranded DNA cytidine deaminase (DddA), and a uracil glycosylase inhibitor to mediate C•G-to-T•A editing in nuclear and organelle DNA. Here we report the development of zinc finger DdCBEs (ZF-DdCBEs) and the improvement of their editing performance through engineering their architectures, defining improved ZF scaffolds, and installing DddA activity-enhancing mutations. We engineer variants with improved DNA specificity by integrating four strategies to reduce off-target editing.

View Article and Find Full Text PDF

Expanding and reprogramming the genetic code of cells for the incorporation of multiple distinct non-canonical amino acids (ncAAs), and the encoded biosynthesis of non-canonical biopolymers, requires the discovery of multiple orthogonal aminoacyl-transfer RNA synthetase/tRNA pairs. These pairs must be orthogonal to both the host synthetases and tRNAs and to each other. Pyrrolysyl-tRNA synthetase (PylRS)/tRNA pairs are the most widely used system for genetic code expansion.

View Article and Find Full Text PDF

A central challenge in expanding the genetic code of cells to incorporate noncanonical amino acids into proteins is the scalable discovery of aminoacyl-tRNA synthetase (aaRS)-tRNA pairs that are orthogonal in their aminoacylation specificity. Here we computationally identify candidate orthogonal tRNAs from millions of sequences and develop a rapid, scalable approach-named tRNA Extension (tREX)-to determine the in vivo aminoacylation status of tRNAs. Using tREX, we test 243 candidate tRNAs in Escherichia coli and identify 71 orthogonal tRNAs, covering 16 isoacceptor classes, and 23 functional orthogonal tRNA-cognate aaRS pairs.

View Article and Find Full Text PDF

We recently characterized a new class of pyrrolysyl-tRNA synthetase (PylRS)/tRNA pairs from Methanomassiliicocales that are active and orthogonal in Escherichia coli. The aminoacyl-tRNA synthetases (aaRSs) of these pairs lack the N-terminal domain that is essential for tRNA recognition and in vivo activity in the Methanosarcina mazei ( Mm) PylRS but share a homologous active site with MmPylRS; this facilitates the transplantation of mutations discovered with existing PylRS systems into the new PylRS systems to reprogram their substrate specificity for the incorporation of noncanonical amino acids (ncAAs). Several of the new PylRS/tRNA pairs, or their evolved variants [including Methanomethylophilus alvus ( Ma) PylRS/ MatRNA(6)], are mutually orthogonal to the MmPylRS/ MmtRNA pair, and the active sites of the Mm pair and Ma pair can be diverged to enable the incorporation of distinct ncAAs in response to distinct codons via orthogonal translation in E.

View Article and Find Full Text PDF

Genetically encoding distinct non-canonical amino acids (ncAAs) into proteins synthesized in cells requires mutually orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pairs. The pyrrolysyl-tRNA synthetase/tRNA pair from Methanosarcina mazei (Mm) has been engineered to incorporate diverse ncAAs and is commonly considered an ideal pair for genetic code expansion. However, finding new aaRS/tRNA pairs that share the advantages of the MmPylRS/MmtRNA pair and are orthogonal to both endogenous aaRS/tRNA pairs and the MmPylRS/MmtRNA pair has proved challenging.

View Article and Find Full Text PDF

A number of different proteins possess the ability to polymerize into filamentous structures. Certain classes of such assemblies can have key functional roles in the cell, such as providing the structural basis for the cytoskeleton in the case of actin and tubulin, while others are implicated in the development of many pathological conditions, including Alzheimer's and Parkinson's diseases. In general, the fragmentation of such structures changes the total number of filament ends, which act as growth sites, and hence is a key feature of the dynamics of filamentous growth phenomena.

View Article and Find Full Text PDF