Publications by authors named "Julian Burks"

Gastrointestinal (GI) cancers represent a complex array of cancers that affect the digestive system. This includes liver, pancreatic, colon, rectal, anal, gastric, esophageal, intestinal and gallbladder cancer. Patients diagnosed with certain GI cancers typically have low survival rates, so new therapeutic approaches are needed.

View Article and Find Full Text PDF

Interferon-stimulated gene 15 (ISG15) is a 15 kDa protein induced by type I interferons (IFN-α and IFN-β) and is a member of the ubiquitin-like superfamily of proteins. The ISG15 pathway is highly expressed in various malignancies, including pancreatic ductal adenocarcinoma (PDAC), suggesting a potential role of the ISG15 pathway (free ISG15 and ISG15 conjugates) in pancreatic carcinogenesis. However, very little is known about how the ISG15 pathway may contribute to pancreatic tumorigenesis.

View Article and Find Full Text PDF

Pancreatic cancer has been termed a 'recalcitrant cancer' due to its relative resistance to chemotherapy and immunotherapy. This resistance is thought to be due in part to the dense fibrotic tumor microenvironment and lack of tumor infiltrating CD8 + T cells. The gastrointestinal peptide, gastrin, has been shown to stimulate growth of pancreatic cancer by both a paracrine and autocrine mechanism.

View Article and Find Full Text PDF

Objective: The KRAS gene is the most frequently mutated gene in pancreatic cancer, and no successful anti-Ras therapy has been developed. Gastrin has been shown to stimulate pancreatic cancer in an autocrine fashion. We hypothesized that reactivation of the peptide gastrin collaborates with KRAS during pancreatic carcinogenesis.

View Article and Find Full Text PDF

Background & Aims: Pancreatic ductal adenocarcinoma (PDAC) remains the most aggressive malignancy with the lowest 5-year survival rate of all cancers in part owing to the lack of tumor-specific therapy and the rapid metastatic nature of this cancer. The gastrointestinal peptide gastrin is a trophic peptide that stimulates growth of PDAC in an autocrine fashion by interaction with the cholecystokinin receptor that is overexpressed in this malignancy.

Methods: We developed a therapeutic novel polyplex nanoparticle (NP) that selectively targets the cholecystokinin receptor on PDAC.

View Article and Find Full Text PDF

The gastrointestinal peptide cholecystokinin (CCK) is released from the duodenum in response to dietary fat to aid in digestion, and plasma CCK levels are elevated with the consumption of high-fat diets. CCK is also a trophic peptide for the pancreas and has also been shown to stimulate growth of pancreatic cancer. In the current investigation, we studied the influence of a diet high in saturated fat on the growth of pancreatic cancer in syngeneic murine models before the mice became obese to exclude the confounding factors associated with obesity.

View Article and Find Full Text PDF

Interferon-Stimulated Gene 15 (ISG15), an antagonist of the canonical ubiquitin pathway, is frequently overexpressed in various cancers. In cancer cells, ISG15 is detected as free (intracellular) and conjugated to cellular proteins (ISGylation). Free ISG15 is also secreted into the extracellular milieu.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of the interferon-stimulated gene 15 (ISG15) pathway in breast cancer, revealing that it significantly alters cell structure and promotes migration in ZR-75-1 breast cancer cells.
  • - ISG15 and its conjugating enzyme UbcH8 disrupt F-actin architecture and focal adhesions, which are critical for maintaining cell stability and shape.
  • - The research indicates that ISG15 inhibits the breakdown of proteins related to tumor cell movement and invasion, suggesting that the ISG15 pathway could also affect similar processes in various other tumors beyond breast cancer.
View Article and Find Full Text PDF

Irofulven (6-hydroxymethylacylfulvene, HMAF, MGI 114) is one of a new class of anticancer agents that are semisynthetic derivatives of the mushroom toxin illudin S. Preclinical studies and clinical trials have demonstrated that irofulven is effective against several tumor types. Mechanisms of action studies indicate that irofulven induces DNA damage, MAPK activation, and apoptosis.

View Article and Find Full Text PDF