With the use of high-density multi-electrode recording devices, electrophysiological signals resulting from action potentials of individual neurons can now be reliably detected on multiple adjacent recording electrodes. Spike sorting assigns these signals to putative neural sources. However, until now, spike sorting can only be performed after completion of the recording, preventing true real time usage of spike sorting algorithms.
View Article and Find Full Text PDFIn computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model.
View Article and Find Full Text PDFProbing the architecture of neuronal circuits and the principles that underlie their functional organization remains an important challenge of modern neurosciences. This holds true, in particular, for the inference of neuronal connectivity from large-scale extracellular recordings. Despite the popularity of this approach and a number of elaborate methods to reconstruct networks, the degree to which synaptic connections can be reconstructed from spike-train recordings alone remains controversial.
View Article and Find Full Text PDFA growing consensus that the brain is a mechanosensitive organ is driving the need for tools that mechanically stimulate and simultaneously record the electrophysiological response of neurons within neuronal networks. Here we introduce a synchronized combination of atomic force microscopy, high-density microelectrode array and fluorescence microscopy to monitor neuronal networks and to mechanically characterize and stimulate individual neurons at piconewton force sensitivity and nanometre precision while monitoring their electrophysiological activity at subcellular spatial and millisecond temporal resolution. No correlation is found between mechanical stiffness and electrophysiological activity of neuronal compartments.
View Article and Find Full Text PDFNeuronal firing sequences are thought to be the basic building blocks of neural coding and information broadcasting within the brain. However, when sequences emerge during neurodevelopment remains unknown. We demonstrate that structured firing sequences are present in spontaneous activity of human brain organoids and neonatal brain slices from the murine somatosensory cortex.
View Article and Find Full Text PDFPerception, thoughts, and actions are encoded by the coordinated activity of large neuronal populations spread over large areas. However, existing electrophysiological devices are limited by their scalability in capturing this cortex-wide activity. Here, we developed an electrode connector based on an ultra-conformable thin-film electrode array that self-assembles onto silicon microelectrode arrays enabling multithousand channel counts at a millimeter scale.
View Article and Find Full Text PDFModern Graph Neural Networks (GNNs) provide opportunities to study the determinants underlying the complex activity patterns of biological neuronal networks. In this study, we applied GNNs to a large-scale electrophysiological dataset of rodent primary neuronal networks obtained by means of high-density microelectrode arrays (HD-MEAs). HD-MEAs allow for long-term recording of extracellular spiking activity of individual neurons and networks and enable the extraction of physiologically relevant features at the single-neuron and population level.
View Article and Find Full Text PDFDespite being composed of highly plastic neurons with extensive positive feedback, the nervous system maintains stable overall function. To keep activity within bounds, it relies on a set of negative feedback mechanisms that can induce stabilizing adjustments and that are collectively termed "homeostatic plasticity." Recently, a highly excitable microdomain, located at the proximal end of the axon-the axon initial segment (AIS)-was found to exhibit structural modifications in response to activity perturbations.
View Article and Find Full Text PDF: Techniques to identify monosynaptic connections between neurons have been vital for neuroscience research, facilitating important advancements concerning network topology, synaptic plasticity, and synaptic integration, among others.: Here, we introduce a novel approach to identify and monitor monosynaptic connections using high-resolution dendritic spine Caimaging combined with simultaneous large-scale recording of extracellular electrical activity by means of high-density microelectrode arrays.: We introduce an easily adoptable analysis pipeline that associates the imaged spine with its presynaptic unit and test it onrecordings.
View Article and Find Full Text PDFSlow-wave sleep is thought to be important for retuning cortical synapses, but the cellular mechanisms remain unresolved. During slow-wave activity, cortical neurons display synchronized transitions between depolarized Up states and hyperpolarized Down states. Here, using recordings from LIII pyramidal neurons from acute slices of mouse medial entorhinal cortex, we find that subthreshold inputs arriving during the Up state undergo synaptic weakening.
View Article and Find Full Text PDFMost patients with N-methyl D-aspartate-receptor antibody encephalitis develop seizures but the epileptogenicity of the antibodies has not been investigated in vivo. Wireless electroencephalogram transmitters were implanted into 23 C57BL/6 mice before left lateral ventricle injection of antibody-positive (test) or healthy (control) immunoglobulin G. Mice were challenged 48 h later with a subthreshold dose (40 mg/kg) of the chemo-convulsant pentylenetetrazol and events recorded over 1 h.
View Article and Find Full Text PDFHigh-affinity extrasynaptic GABA(A) receptors (GABA(A)Rs) are a prominent feature of cerebellar granule neurons and thalamic relay neurons. In both cell types, the presence of synaptic glomeruli would be expected to promote activation of these GABA(A)Rs, contributing to phasic spillover-mediated currents and tonic inhibition. However, the precise role of different receptor subtypes in these two phenomena is unclear.
View Article and Find Full Text PDF