We report here a concise and divergent enantioselective total synthesis of the revised structures of marine anti-cancer sesquiterpene hydroquinone meroterpenoids (+)-dysiherbols A-E (6-10) using dimethyl predysiherbol 14 as a key common intermediate. Two different improved syntheses of dimethyl predysiherbol 14 were elaborated, one starting from Wieland-Miescher ketone derivative 21, which is regio- and diastereoselectively α-benzylated prior to establishing the 6/6/5/6-fused tetracyclic core structure through intramolecular Heck reaction. The second approach exploits an enantioselective 1,4-addition and a Au-catalyzed double cyclization to build-up the core ring system.
View Article and Find Full Text PDFA 12-step total synthesis of the natural product dysiherbol A, a strongly anti-inflammatory and anti-tumor avarane meroterpene isolated from the marine sponge Dysidea sp., was elaborated. As key steps, the synthesis features an enantioselective Cu-catalyzed 1,4-addition/enolate-trapping opening move, an Au-catalyzed double cyclization to build up the tetracyclic core-carbon skeleton, and a late installation of the C5-bridgehead methyl group via proton-induced cyclopropane opening associated with spontaneous cyclic ether formation.
View Article and Find Full Text PDF