Publications by authors named "Julian Armstrong"

Background: Interventional bronchoscopists manage central airway obstruction (CAO) through dilation, tumor ablation, and/or stent insertion. Anatomical optical coherence tomography (aOCT), a validated light-based imaging technique, has the unique capacity of providing bronchoscopists with intraprocedural central airway measurements. This study aims to describe the potential role of real-time aOCT in guiding interventions during CAO procedures.

View Article and Find Full Text PDF

Rationale: Our understanding of how airway remodeling affects regional airway elastic properties is limited due to technical difficulties in quantitatively measuring dynamic, in vivo airway dimensions. Such knowledge could help elucidate mechanisms of excessive airway narrowing.

Objectives: To use anatomical optical coherence tomography (aOCT) to compare central airway elastic properties in control subjects and those with obstructive lung diseases.

View Article and Find Full Text PDF

Background: Previous histological and imaging studies have shown the presence of variability in the degree of bronchoconstriction of airways sampled at different locations in the lung (i.e., heterogeneity).

View Article and Find Full Text PDF

Regulation of airway caliber by lung volume or bronchoconstrictor stimulation is dependent on physiological, structural, and mechanical events within the airway wall, including airway smooth muscle (ASM) contraction, deformation of the mucosa and cartilage, and tensioning of elastic matrices linking wall components. Despite close association between events in the airway wall and the resulting airway caliber, these have typically been studied separately: the former primarily using histological approaches, the latter with a range of imaging modalities. We describe a new optical technique, anatomical optical coherence tomography (aOCT), which allows changes at the luminal surface (airway caliber) to be temporally related to corresponding dynamic movements within the airway wall.

View Article and Find Full Text PDF

We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.

View Article and Find Full Text PDF

Anatomical optical coherence tomography (aOCT) is a long-range endoscopic imaging modality capable of quantifying size and shape of the human airway. A challenge to its in vivo application is motion artifact due to respiratory-related movement of the airway walls. This paper represents the first demonstration of respiratory gating of aOCT airway data, and introduces a novel error measure to guide appropriate parameter selection.

View Article and Find Full Text PDF

Flexible bronchoscopy is a common procedure that is used in both diagnostic and therapeutic settings but does not readily permit measurement of central airway dimensions. Anatomic optical coherence tomography (a OCT), a modification of conventional optical coherence tomography (OCT), is a novel light-based imaging tool with the capacity to measure the diameter and lumen area of the central airways accurately during bronchoscopy. This study describes the first clinical use of aOCT imaging in the lower airways in three individuals with common endobronchial pathologies.

View Article and Find Full Text PDF

Study Objectives: In patients with obstructive sleep apnea (OSA), the severity and frequency of respiratory events is increased in the supine body posture compared with the lateral recumbent posture. The mechanism responsible is not clear but may relate to the effect of posture on upper airway shape and size. This study compared the effect of body posture on upper airway shape and size in individuals with OSA with control subjects matched for age, BMI, and gender.

View Article and Find Full Text PDF

Endoscopic treatment of lower airway pathologies requires accurate quantification of airway dimensions. We demonstrate the application of a real-time endoscopic optical coherence tomography system that can image lower airway anatomy and quantify airway lumen dimensions intra-operatively. Results demonstrate the ability to acquire 3D scans of airway anatomy and include comparison against a pre-operative X-ray CT.

View Article and Find Full Text PDF

This study compared shape, size and length of the pharyngeal airway in individuals with and without obstructive sleep apnoea (OSA) using a novel endoscopic imaging technique, anatomical optical coherence tomography (aOCT). The study population comprised a preliminary study group of 20 OSA patients and a subsequent controlled study group of 10 OSA patients and 10 body mass index (BMI)-, gender- and age-matched control subjects without OSA. All subjects were scanned using aOCT while awake, supine and breathing quietly.

View Article and Find Full Text PDF

In this paper, we report on anatomical optical coherence tomography, a catheter-based optical modality designed to provide quantitative sectional images of internal hollow organ anatomy over extended observational periods. We consider the design and performance of an instrument and its initial intended application in the human upper airway for the characterization of obstructive sleep apnea (OSA). Compared with current modalities, the technique uniquely combines quantitative imaging, bedside operation, and safety for use over extended periods of time with no cumulative dose limit.

View Article and Find Full Text PDF

Three-dimensional optical coherence tomography (3D-OCT) is used to evaluate the structure and pathology of regenerating mouse skeletal muscle autografts for the first time. The death of myofibers with associated inflammation and subsequent new muscle formation in this graft model represents key features of necrosis and inflammation in the human disease Duchenne muscular dystrophy. We perform 3D-OCT imaging of excised autografts and compare OCT images with coregistered histology.

View Article and Find Full Text PDF

We present a novel needle-based device for the measurement of refractive index and scattering using low-coherence interferometry. Coupled to the sample arm of an optical coherence tomography system, the device detects the scattering response of, and optical path length through, a sample residing in a fixed-width channel. We report use of the device to make near-infrared measurements of tissues and materials with known optical properties.

View Article and Find Full Text PDF

We present theoretical calculations, based on a random phasor sum model, which show that the optical coherence tomography speckle contrast ratio is dependent on the local density of scattering particles in a sample, provided that the effective number of scatterers in the probed volume is less than about five. We confirm these theoretical predictions experimentally, using suspensions of microspheres in water. The observed contrast ratios vary in value from the Rayleigh limit of 0.

View Article and Find Full Text PDF

Background: Measurements of upper airway size and shape are important in investigating the pathophysiology of obstructive sleep apnea (OSA) and in devising, applying, and determining the effectiveness of treatment modalities. We describe an endoscopic optical technique (anatomic optical coherence tomography, aOCT) that provides quantitative real-time imaging of the internal anatomy of the human upper airway.

Methods: Validation studies were performed by comparing aOCT- and computed tomography (CT)-derived measurements of cross-sectional area (CSA) in (1) conduits in a wax phantom and (2) the velo-, oro-, and hypopharynx during wakefulness in five volunteers.

View Article and Find Full Text PDF

We demonstrate tomographic imaging of the refractive index of turbid media using bifocal optical coherence refractometry (BOCR). The technique, which is a variant of optical coherence tomography, is based on the measurement of the optical pathlength difference between two foci simultaneously present in a medium of interest. We describe a new method to axially shift the bifocal optical pathlength that avoids the need to physically relocate the objective lens or the sample during an axial scan, and present an experimental realization based on an adaptive liquid-crystal lens.

View Article and Find Full Text PDF

We describe a long-range optical coherence tomography system for size and shape measurement of large hollow organs in the human body. The system employs a frequency-domain optical delay line of a configuration that enables the combination of high-speed operation with long scan range. We compare the achievable maximum delay of several delay line configurations, and identify the configurations with the greatest delay range.

View Article and Find Full Text PDF