Publications by authors named "Julian Alexander Amani"

Single-atom B or N substitutional doping in single-layer suspended graphene, realized by low-energy ion implantation, is shown to induce a dampening or enhancement of the characteristic interband π plasmon of graphene through a high-resolution electron energy loss spectroscopy study using scanning transmission electron microscopy. A relative 16% decrease or 20% increase in the π plasmon quality factor is attributed to the presence of a single substitutional B or N atom dopant, respectively. This modification is in both cases shown to be relatively localized, with data suggesting the plasmonic response tailoring can no longer be detected within experimental uncertainties beyond a distance of approximately 1 nm from the dopant.

View Article and Find Full Text PDF

A combination of scanning transmission electron microscopy, electron energy loss spectroscopy, and ab initio calculations is used to describe the electronic structure modifications incurred by free-standing graphene through two types of single-atom doping. The N K and C K electron energy loss transitions show the presence of π* bonding states, which are highly localized around the N dopant. In contrast, the B K transition of a single B dopant atom shows an unusual broad asymmetric peak which is the result of delocalized π* states away from the B dopant.

View Article and Find Full Text PDF