Introduction: KDM2B encodes a JmjC domain-containing histone lysine demethylase, which functions as an oncogene in several types of tumors, including TNBC. This study was initiated to address the cancer relevance of the results of our earlier work, which had shown that overexpression of KDM2B renders mouse embryonic fibroblasts (MEFs) resistant to oxidative stress by regulating antioxidant mechanisms.
Methods: We mainly employed a multi-omics strategy consisting of RNA-Seq, quantitative TMT proteomics, Mass-spectrometry-based global metabolomics, ATAC-Seq and ChIP-seq, to explore the role of KDM2B in the resistance to oxidative stress and intermediary metabolism.
Somatic heterozygous mutations in the active site of the enhancer of zeste homolog 2 (EZH2) are prevalent in diffuse large B-cell lymphoma (DLBCL) and acute myeloid leukemia (AML). The methyltransferase activity of EZH2 towards lysine 27 on histone H3 (H3K27) and non-histone proteins is dysregulated by the presence of gain-of-function (GOF) and loss-of-function (LOF) mutations altering chromatin compaction, protein complex recruitment, and transcriptional regulation. In this study, a comprehensive multi-omics approach was carried out to characterize the effects of differential H3K27me3 deposition driven by EZH2 mutations.
View Article and Find Full Text PDFIntroduction: KDM2B encodes a JmjC domain-containing histone lysine demethylase, which functions as an oncogene in several types of tumors, including TNBC. This study was initiated to address the cancer relevance of the results of our earlier work, which had shown that overexpression of KDM2B renders mouse embryonic fibroblasts (MEFs) resistant to oxidative stress by regulating antioxidant mechanisms.
Methods: We mainly employed a multi-omics strategy consisting of RNA-Seq, quantitative TMT proteomics, Mass-spectrometry-based global metabolomics, ATAC-Seq and ChIP-seq, to explore the role of KDM2B in the resistance to oxidative stress and intermediary metabolism.
Acute respiratory distress syndrome (ARDS) represents a significant burden to the healthcare system, with ≈200 000 cases diagnosed annually in the USA. ARDS patients suffer from severe refractory hypoxemia, alveolar-capillary barrier dysfunction, impaired surfactant function, and abnormal upregulation of inflammatory pathways that lead to intensive care unit admission, prolonged hospitalization, and increased disability-adjusted life years. Currently, there is no cure or FDA-approved therapy for ARDS.
View Article and Find Full Text PDFProtein post-translational modification (PTM) is crucial to modulate protein interactions and activity in various biological processes. Emerging evidence has revealed PTM patterns participate in the pathology onset and progression of various diseases. Current PTM identification relies mainly on mass spectrometry-based approaches that limit the assessment to the entire protein population in question.
View Article and Find Full Text PDFIn recent years, high-throughput lipid profiling has contributed to understand the biological, physiological and pathological roles of lipids in living organisms. Across all kingdoms of life, important cell and systemic processes are mediated by lipids including compartmentalization, signaling and energy homeostasis. Despite important advances in liquid chromatography and mass spectrometry, sample extraction procedures remain a bottleneck in lipidomic studies, since the wide structural diversity of lipids imposes a constrain in the type and amount of lipids extracted.
View Article and Find Full Text PDFBreast cancer (BC) is a highly heterogeneous disease associated with metabolic reprogramming. The shifts in the metabolome caused by BC still lack data from Latin populations of Hispanic origin. In this pilot study, metabolomic and lipidomic approaches were performed to establish a plasma metabolic fingerprint of Colombian Hispanic women with BC.
View Article and Find Full Text PDFMetabolic biomarkers for breast cancer (BC) prognosis and diagnosis are required, given the increment of BC incidence rates in developing countries and its prevalence in women worldwide. Human urine represents a useful resource of metabolites for biomarker discovery, because it could reflect metabolic alterations caused by a particular pathological state. Furthermore, urine analysis is readily available, it is non-invasive and allows in-time monitoring.
View Article and Find Full Text PDF