Publications by authors named "Julia-Charlotte Doerner"

The evolving development landscape of biotherapeutics and their growing complexity from simple antibodies into bi- and multi-specific molecules necessitates sophisticated discovery and engineering platforms. This review focuses on mammalian display technology as a potential solution to the pressing challenges in biotherapeutic development. We provide a comparative analysis with established methodologies, highlighting key aspects of mammalian display technology, including genetic engineering, construction of display libraries, and its pivotal role in hit selection and/or developability engineering.

View Article and Find Full Text PDF

Therapeutic antibodies have predominantly been IgG-based. However, the ongoing clinical trial of MOv18 IgE has highlighted the potential of using IgE antibodies in cancer therapy. While extensive studies targeting IgG glycosylation resulted in a rational basis for the development of enhanced biotherapeutics, IgE glycosylation remains an area with limited analyses.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is a tumour entity with unmet medical need. To assess the therapeutic potential of oncolytic virotherapy (OVT) against PDAC, different oncolytic viruses (OVs) are currently investigated in clinical trials. However, systematic comparisons of these different OVs in terms of efficacy against PDAC and biomarkers predicting therapeutic response are lacking.

View Article and Find Full Text PDF

Periplasmic binding proteins (PBPs) are bacterial proteins commonly used as scaffolds for substrate-detecting biosensors. In these biosensors, effector proteins (for example fluorescent proteins) are inserted into a PBP such that the effector protein's output changes upon PBP-substate binding. The insertion site is often determined by comparison of PBP apo/holo crystal structures, but random insertion libraries have shown that this can miss the best sites.

View Article and Find Full Text PDF

Natural membrane receptors are proteins that can report on changes in the concentration of external chemical messengers. Messenger binding to a receptor produces conformational changes that are relayed through the membrane into the cell; this information allows cells to adapt to changes in their environment. Artificial membrane receptors (R)-1 and (S)-1 are helical α-aminoisobutyric acid (Aib) foldamers that replicate key parts of this information relay.

View Article and Find Full Text PDF

Eosinophil recruitment is a pathological hallmark of many allergic and helminthic diseases. Here, we investigated chemokine receptor CCR3-induced eosinophil recruitment in sialyltransferase mice. We found a marked decrease in eosinophil extravasation into CCL11-stimulated cremaster muscles and into the inflamed peritoneal cavity of mice.

View Article and Find Full Text PDF

Safe and secure vehicle routing problems refer to the transportation of dangerous (e.g., flammable liquids) or valuable goods (e.

View Article and Find Full Text PDF

The toolbox of modern antibody engineering allows the design of versatile novel functionalities exceeding nature's repertoire. Many bispecific antibodies comprise heterodimeric Fc portions recently validated through the approval of several bispecific biotherapeutics. While heterodimerization methodologies have been established for low-throughput large-scale production, few approaches exist to overcome the bottleneck of large combinatorial screening efforts that are essential for the identification of the best possible bispecific antibody.

View Article and Find Full Text PDF

Objectives: Despite their efficacy, some immunotherapies have been shown to induce immune-related adverse events, including the potentially life-threatening cytokine release syndrome (CRS), calling for reliable and translational preclinical models to predict potential safety issues and investigate their rescue. Here, we tested the reliability of humanized BRGSF mice for the assessment of therapeutics-induced CRS features in preclinical settings.

Methods: BRGSF mice reconstituted with human umbilical cord blood CD34 cells (BRGSF-CBC) were injected with anti-CD3 antibody (OKT3), anti-CD3/CD19 bispecific T-cell engager Blinatumomab, or VISTA-targeting antibody.

View Article and Find Full Text PDF
Article Synopsis
  • The study developed chimeric ultralong antibodies derived from cattle that specifically target tumor necrosis factor α (TNF-α) using immunization and yeast surface display techniques.
  • One particular antibody variant was found to effectively neutralize TNF-α without losing potency when its structure was modified.
  • The researchers also enhanced the antibody adalimumab by incorporating this structural change, resulting in a new antibody design that provides improved inhibition of TNF-α.
View Article and Find Full Text PDF

A complex microbial community in the gut may prevent the colonization of enteric pathogens such as . Some individual or a combination of species in the gut may confer colonization resistance against . To gain a better understanding of the colonization resistance against , we isolated a library of 1,300 bacterial strains from feral chicken gut microbiota which represented a total of 51 species.

View Article and Find Full Text PDF

Optimal combinations of paratopes assembled into a biparatopic antibody have the capacity to mediate high-grade target cross-linking on cell membranes, leading to degradation of the target, as well as antibody and payload delivery in the case of an antibody-drug conjugate (ADC). In the work presented here, molecular docking suggested a suitable paratope combination targeting c-MET, but hydrophobic patches in essential binding regions of one moiety necessitated engineering. In addition to rational design of HCDR2 and HCDR3 mutations, site-specific spiking libraries were generated and screened in yeast and mammalian surface display approaches.

View Article and Find Full Text PDF

A versatile synthesis strategy for fluorescent 3-halo-4H-chromen-4-one derivatives is reported. The method involves the oxidative α-halogenation of enaminones performed by an efficient and sustainable oxidation system. The use of Oxone® in combination with KCl, KBr, or KI enables the preparation of 3-chloro-, 3-bromo-, or 3-iodo-4H-chromen-4-one in good to excellent yields, with great functional group tolerance where the protocol is amenable to gram-scale synthesis.

View Article and Find Full Text PDF

Aim: The purpose of this study was to investigate the clinical application of Compressed SENSE accelerated single-breath-hold LGE with 3D isotropic resolution compared to conventional LGE imaging acquired in multiple breath-holds.

Material & Methods: This was a retrospective, single-center study including 105 examinations of 101 patients (48.2 ± 16.

View Article and Find Full Text PDF

In this work we present a novel symmetric bispecific antibody format based on engraftments of cattle-derived knob paratopes onto peripheral loops of the IgG1 Fc region. For this, knob architectures obtained from bovine ultralong CDR-H3 antibodies were inserted into the AB loop or EF loop of the CH3 domain, enabling the introduction of an artificial binding specificity into an IgG molecule. We demonstrate that inserted knob domains largely retain their binding affinities, resulting into bispecific antibody derivatives versatile for effector cell redirection.

View Article and Find Full Text PDF

In this study, we demonstrate the feasibility of yeast surface display (YSD) and nextgeneration sequencing (NGS) in combination with artificial intelligence and machine learning methods (AI/ML) for the identification of de novo humanized single domain antibodies (sdAbs) with favorable early developability profiles. The display library was derived from a novel approach, in which VHH-based CDR3 regions obtained from a llama (Lama glama), immunized against NKp46, were grafted onto a humanized VHH backbone library that was diversified in CDR1 and CDR2. Following NGS analysis of sequence pools from two rounds of fluorescence-activated cell sorting we focused on four sequence clusters based on NGS frequency and enrichment analysis as well as in silico developability assessment.

View Article and Find Full Text PDF

Inflammasomes are essential for host defense against intracellular bacterial pathogens like , as they activate caspases, which promote cytokine release and cell death to control infection. In mice, interferon (IFN) signaling promotes inflammasome responses against bacteria by inducing a family of IFN-inducible GTPases known as guanylate-binding proteins (GBPs). Within murine macrophages, IFN promotes the rupture of the -containing vacuole (LCV), while GBPs are dispensable for this process.

View Article and Find Full Text PDF

IV oncology treatments are associated with severe side effects (SEs) that can decrease patients' quality of life and lead to increased hospitalizations. However, improved reporting with remote monitoring systems (RMSs) may.

View Article and Find Full Text PDF

Recently, there has been a co-evolution of mammalian libraries and diverse microfluidic approaches for therapeutic antibody hit discovery. Mammalian libraries enable the preservation of full immune repertoires, produce hit candidates in final format and facilitate broad combinatorial bispecific antibody screening, while several available microfluidic methodologies offer opportunities for rapid high-content screens. Here, we report proof-of-concept studies exploring the potential of combining microfluidic technologies with mammalian libraries for antibody discovery.

View Article and Find Full Text PDF

Purpose: The EORTC-26101 study was a randomized phase II and III clinical trial of bevacizumab in combination with lomustine versus lomustine alone in progressive glioblastoma. Other than for progression-free survival (PFS), there was no benefit from addition of bevacizumab for overall survival (OS). However, molecular data allow for the rare opportunity to assess prognostic biomarkers from primary surgery for their impact in progressive glioblastoma.

View Article and Find Full Text PDF

Here, we generated bispecific antibody (bsAb) derivatives that mimic the function of interleukin (IL)-18 based on single domain antibodies (sdAbs) specific to IL-18 Rα and IL-18 Rβ. For this, camelids were immunized, followed by yeast surface display (YSD)-enabled discovery of VHHs targeting the individual receptor subunits. Upon reformatting into a strictly monovalent (1 + 1) bispecific sdAb architecture, several bsAbs triggered dose-dependent IL-18 R downstream signaling on IL-18 reporter cells, as well as IFN-γ release by peripheral blood mononuclear cells in the presence of low-dose IL-12.

View Article and Find Full Text PDF

Microfluidics has been recently applied to better understand the spatial and temporal progression of the immune response in several species, for tool and biotherapeutic production cell line development and rapid antibody hit discovery. Several technologies have emerged that allow interrogation of large diversities of antibody-secreting cells in defined compartments such as picoliter droplets or nanopens. Mostly primary cells of immunized rodents but also recombinant mammalian libraries are screened for specific binding or directly for the desired function.

View Article and Find Full Text PDF

The recent advent of microfluidic-assisted antibody hit discovery as standard methodology accelerated pharmaceutical research. While work on compatible recombinant antibody library approaches is ongoing, the major source of antibody-secreting cells (ASCs) remains to be primary B cells of mostly rodent origin. As fainting viability and secretion rates can lead to false-negative screening results, careful preparation of these cells is an essential prerequisite for successful hit discovery.

View Article and Find Full Text PDF

Treatment with oncolytic measles vaccines (MV) elicits activation of immune cells, including natural killer (NK) cells. However, we found that MV-activated NK cells show only modest direct cytotoxic activity against tumor cells. To specifically direct NK cells towards tumor cells, we developed oncolytic measles vaccines encoding bispecific killer engagers (MV-BiKE) targeting CD16A on NK cells and carcinoembryonic antigen (CEA) as a model tumor antigen.

View Article and Find Full Text PDF