Sphingolipid metabolism is dysregulated in many cancers, allowing cells to evade apoptosis through increased sphingosine-1-phosphate (S1P) and decreased ceramides. Ceramidases hydrolyze ceramides to sphingosine, which is phosphorylated by sphingosine kinases to generate S1P. The S1P allows cells to evade apoptosis by shifting the equilibrium away from ceramides, which favor cell death.
View Article and Find Full Text PDFThe Lazarus effect is a rare condition that happens when someone seemingly dead shows signs of life. The epidermal growth factor receptor (EGFR) represents a target in the fatal neoplasm glioblastoma (GBM) that through a series of negative clinical trials has prompted a vocal subset of the neuro-oncology community to declare this target dead. However, an argument can be made that the core tenets of precision oncology were overlooked in the initial clinical enthusiasm over EGFR as a therapeutic target in GBM.
View Article and Find Full Text PDFGlioblastoma (GBM) remains one of the most aggressive cancers, partially due to its ability to migrate into the surrounding brain. The sphingolipid balance, or the balance between ceramides and sphingosine-1-phosphate, contributes to the ability of GBM cells to migrate or invade. Of the ceramidases which hydrolyze ceramides, acid ceramidase (ASAH1) is highly expressed in GBM samples compared to non-tumor brain.
View Article and Find Full Text PDFGlutaraldehyde (GA) is used as biocide in hospitals. Recent public investigations on the chemical composition of biocides used in Romania have in some cases found GA, as a key ingredient, to be apparently diluted. However, these data did not explicitly consider the complex chemical equilibria inherent to GA.
View Article and Find Full Text PDF