Environmental models, often applied to questions on the fate and transport of chemical hazards, have recently become important in tracing certain environmental pathogens to their upstream sources of contamination. These tools, such as first order decay models applied to contaminants in surface waters, offer promise for quantifying the fate and transport of pathogens with multiple environmental stages and/or multiple hosts, in addition to those pathogens whose environmental stages are entirely waterborne. Here we consider the fate and transport capabilities of the human schistosome Schistosoma japonicum, which exhibits two waterborne stages and is carried by an amphibious intermediate snail host.
View Article and Find Full Text PDFObjective: To estimate the disease burden attributable to unsafe water and poor sanitation and hygiene in China, to identify high-burden groups and to inform improvement measures.
Methods: The disease burden attributable to unsafe water and poor sanitation and hygiene in China was estimated for diseases resulting from exposure to biologically contaminated soil and water (diarrhoeal disease, helminthiases and schistosomiasis) and vector transmission resulting from inadequate management of water resources (malaria, dengue and Japanese encephalitis). The data were obtained from China's national infectious disease reporting system, national helminthiasis surveys and national water and sanitation surveys.
Background: Climate change is expected to have a range of health impacts, some of which are already apparent. Public health adaptation is imperative, but there has been little discussion of how to increase adaptive capacity and resilience in public health systems.
Objectives: We explored possible explanations for the lack of work on adaptive capacity, outline climate-health challenges that may lie outside public health's coping range, and consider changes in practice that could increase public health's adaptive capacity.