In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed.
View Article and Find Full Text PDFHirschsprung disease (HSCR, OMIM 142623) involves congenital intestinal obstruction caused by dysfunction of neural crest cells and their progeny during enteric nervous system (ENS) development. HSCR is a multifactorial disorder; pathogenetic variants accounting for disease phenotype are identified only in a minority of cases, and the identification of novel disease-relevant genes remains challenging. In order to identify and to validate a potential disease-causing relevance of novel HSCR candidate genes, we established a complementary study approach, combining whole exome sequencing (WES) with transcriptome analysis of murine embryonic ENS-related tissues, literature and database searches, in silico network analyses, and functional readouts using candidate gene-specific genome-edited cell clones.
View Article and Find Full Text PDFStore-operated Ca2+ entry (SOCE) is the major route of Ca2+ influx in platelets. The Ca2+ sensor stromal interaction molecule 1 (STIM1) triggers SOCE by forming punctate structures with the Ca2+ channel Orai1 and the inositol trisphosphate receptor (IP3R), thereby linking the endo-/sarcoplasmic reticulum to the plasma membrane. Here, we identified the BAR domain superfamily member bridging integrator 2 (BIN2) as an interaction partner of STIM1 and IP3R in platelets.
View Article and Find Full Text PDFMyocardial ischemia is one of the leading health problems worldwide. Therapy consists of the restitution of coronary perfusion which is followed by myocardial inflammation. Platelet-neutrophil interaction is a crucial process during inflammation, yet its consequences are not fully understood.
View Article and Find Full Text PDFPlatelets are essential for normal hemostasis; however, pathological conditions can also trigger unwanted platelet activation precipitating thrombosis and ischemic damage of vital organs such as the heart or brain. (GP)VI- and (CLEC-2)-mediated (hem) (ITAM) signaling represents a major pathway for platelet activation. The two members of the (Grb2) family of adapter proteins expressed in platelets - Grb2 and (Gads) - are part of the hem(ITAM) signaling cascade by forming an adapter protein complex with (LAT).
View Article and Find Full Text PDFDuring platelet spreading, the actin cytoskeleton undergoes rapid rearrangement, forming filopodia and lamellipodia. Controversial data have been published on the role of lamellipodia in thrombus formation and stability. The Wiskott-Aldrich syndrome protein-family verprolin-homologous protein (WAVE)-regulatory complex, which has been shown in other cells to drive lamellipodium formation by enhancing actin nucleation via the actin-related protein 2/3 (Arp2/3) complex, is activated by Ras-related C3 botulinum toxin substrate 1 (Rac1) interaction with the WAVE complex subunit cytoplasmic fragile X mental retardation 1-interacting protein 1 (Cyfip1).
View Article and Find Full Text PDFGenetically modified mice have advanced our knowledge on platelets in hemostasis and beyond tremendously. However, mouse models harbor certain limitations, including availability of platelet specific transgenic strains, and off-target effects on other cell types. Transfusion of genetically modified platelets into thrombocytopenic mice circumvents these problems.
View Article and Find Full Text PDFZinc (Zn) can modulate platelet and coagulation activation pathways, including fibrin formation. Here, we studied the (patho)physiological consequences of abnormal platelet Zn storage and release. To visualize Zn storage in human and mouse platelets, the Zn specific fluorescent dye FluoZin3 was used.
View Article and Find Full Text PDFMaintenance of tumor vasculature integrity is indispensable for tumor growth and thus affects tumor progression. Previous studies have identified platelets as major regulators of tumor vascular integrity, as their depletion selectively rendered tumor vessels highly permeable and caused massive intratumoral hemorrhage. While these results established platelets as potential targets for antitumor therapy, their depletion is not a treatment option due to their essential role in hemostasis.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease ranges from steatosis to non-alcoholic steatohepatitis (NASH), potentially progressing to cirrhosis and hepatocellular carcinoma (HCC). Here, we show that platelet number, platelet activation and platelet aggregation are increased in NASH but not in steatosis or insulin resistance. Antiplatelet therapy (APT; aspirin/clopidogrel, ticagrelor) but not nonsteroidal anti-inflammatory drug (NSAID) treatment with sulindac prevented NASH and subsequent HCC development.
View Article and Find Full Text PDFBackground and Purpose- Acetylsalicylic acid and clopidogrel are the 2 main antithrombotic drugs for secondary prevention in patients with ischemic stroke (IS) without indication for anticoagulation. Because of their limited efficacy and potential side effects, novel antiplatelet agents are urgently needed. Cilostazol, a specific phosphodiesterase (PDE)-3 inhibitor, protected from IS in clinical studies comprising mainly Asian populations.
View Article and Find Full Text PDFPlatelets maintain hemostasis after injury, but also during inflammation. Recent studies have shown that platelets prevent inflammatory bleeding through (hem) immunoreceptor tyrosine-based activation motif-dependent mechanisms irrespective of aggregation during skin and lung inflammation. Although the exact mechanisms underlying this process remain unknown, it was speculated that mediators released from platelet granules might be involved.
View Article and Find Full Text PDFThe proinflammatory microenvironment in the respiratory airway induces maturation of both resident and infiltrating dendritic cells (DCs) upon influenza A virus (IAV) infection. This results in upregulation of antiviral pathways as well as modulation of endocytic processes, which affect the susceptibility of DCs to IAV infection. Therefore, it is highly relevant to understand how IAV interacts with and infects mature DCs.
View Article and Find Full Text PDF