Comp Immunol Microbiol Infect Dis
January 2025
Evidence of SARS-CoV-2 infections in different animal species raises concerns about the potential for animal reservoirs and transmission to humans. Here, we evaluate the exposure of exotic pet species to this virus throughout the early years of the pandemic (2020 - 2022) in southern Spain. A total of 180 exotic pets (126 domestic rabbits, 31 ferrets, and 23 rodents) were analyzed for antibodies against SARS-CoV-2 using two different ELISAs.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), considered a zoonotic agent of wildlife origin, can infect various animal species, including wildlife in free-range and captive environments. Detecting susceptible species and potential reservoirs is crucial for preventing the transmission, spread, genetic evolution, and further emergence of viral variants that are major threats to global health. This study aimed to detect exposure or acute infection by SARS-CoV-2 in 420 animals from 40 different wildlife species, including terrestrial and aquatic mammals, from different regions of Spain during the 2020-2023 coronavirus disease 19 (COVID-19) pandemic.
View Article and Find Full Text PDFWe conducted a serologic and molecular study to assess exposure of captive nonhuman primates (NHPs) to SARS-CoV-2 in Spain during the 2020-2023 COVID-19 pandemic. We found limited exposure of NHPs to SARS-CoV-2. Biosafety measures must be strictly maintained to avoid SARS-CoV-2 reverse-zoonotic transmission in the human-NHP interface.
View Article and Find Full Text PDFSafe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are crucial to fight against the coronavirus disease 2019 pandemic. Most vaccines are based on a mutated version of the Spike glycoprotein [K986P/V987P (S-2P)] with improved stability, yield and immunogenicity. However, S-2P is still produced at low levels.
View Article and Find Full Text PDFPlitidepsin is a host-targeted compound known for inducing a strong anti-SARS-CoV-2 activity, as well as for having the capacity of reducing lung inflammation. Because IL-6 is one of the main cytokines involved in acute respiratory distress syndrome, the effect of plitidepsin in IL-6 secretion in different in vitro and in vivo experimental models was studied. A strong plitidepsin-mediated reduction of IL-6 was found in human monocyte-derived macrophages exposed to nonproductive SARS-CoV-2.
View Article and Find Full Text PDFAge is associated with reduced efficacy of vaccines and linked to higher risk of severe COVID-19. Here we determined the impact of ageing on the efficacy of a SARS-CoV-2 vaccine based on a stabilised Spike glycoprotein (S-29) that had previously shown high efficacy in young animals. Thirteen to 18-month-old golden Syrian hamsters (GSH) and 22-23-month-old K18-hCAE2 mice were immunised twice with S-29 protein in AddaVax adjuvant.
View Article and Find Full Text PDFHere we report the characterization of 17T2, a SARS-CoV-2 pan-neutralizing human monoclonal antibody isolated from a COVID-19 convalescent individual infected during the first pandemic wave. 17T2 is a class 1 VH1-58/κ3-20 antibody, derived from a receptor binding domain (RBD)-specific IgA memory B cell, with a broad neutralizing activity against former and new SARS-CoV-2 variants, including XBB.1.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging zoonotic virus of public and animal health concern, of which felids have been suggested as potential reservoirs. Although SARS-CoV-2 exposure has been detected in domestic and wild captive animals belonging to Felidae family, surveillance has not been carried out in free-ranging wild felids so far. The aim of the present study was to assess SARS-CoV-2 exposure in the Iberian lynx (Lynx pardinus), the most endangered felid in the world.
View Article and Find Full Text PDFPorcine epidemic diarrhea virus (PEDV) is characterized by diarrhea, vomiting, dehydration, and high mortality rates in neonatal piglets. Two distinct genogroups, S-INDEL (G1a, G1b) and non-S INDEL (G2a, G2b, and G2c), circulate worldwide and are characterized by varying degrees of virulence. Here, we compared the early pathogenesis of a PEDV S-INDEL strain obtained from intestine homogenate (CALAF-HOMOG) or adapted to cell culture by 22 passages (CALAF-ADAP) and a virulent non-S INDEL strain (PEDV-USA) in newborn piglets.
View Article and Find Full Text PDFMost COVID-19 vaccines are based on the SARS-CoV-2 Spike glycoprotein (S) or their subunits. However, S shows some structural instability that limits its immunogenicity and production, hampering the development of recombinant S-based vaccines. The introduction of the K986P and V987P (S-2P) mutations increases the production and immunogenicity of the recombinant S trimer, suggesting that these two parameters are related.
View Article and Find Full Text PDFSevere Middle East respiratory syndrome (MERS) is characterized by massive infiltration of immune cells in lungs. MERS-coronavirus (MERS-CoV) replicates in vitro in human macrophages, inducing high pro-inflammatory responses. In contrast, camelids, the main reservoir for MERS-CoV, are asymptomatic carriers.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoonotic virus able to infect humans and multiple nonhuman animal species. Most natural infections in companion, captive zoo, livestock, and wildlife species have been related to a reverse transmission, raising concern about potential generation of animal reservoirs due to human-animal interactions. To date, American mink and white-tailed deer are the only species that led to extensive intraspecies transmission of SARS-CoV-2 after reverse zoonosis, leading to an efficient spread of the virus and subsequent animal-to-human transmission.
View Article and Find Full Text PDFCamelids are economically and socially important in several parts of the world and might carry pathogens with epizootic or zoonotic potential. However, biological research in these species is limited due to lack of reagents. Here, we developed RT-qPCR assays to quantify a panel of camelid innate and adaptive immune response genes, which can be monitored in a single run.
View Article and Find Full Text PDFMore than 40% of individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have experienced persistent or relapsing multi-systemic symptoms months after the onset of coronavirus disease 2019 (COVID-19). This post-COVID-19 condition (PCC) has debilitating effects on the daily life of patients and encompasses a broad spectrum of neurological and neuropsychiatric symptoms including olfactory and gustative impairment, difficulty with concentration and short-term memory, sleep disorders and depression. Animal models have been instrumental to understand acute COVID-19 and validate prophylactic and therapeutic interventions.
View Article and Find Full Text PDFMiddle East respiratory syndrome coronavirus (MERS-CoV) infection can cause fatal pulmonary inflammatory disease in humans. Contrarily, camelids and bats are the main reservoir hosts, tolerant for MERS-CoV replication without suffering clinical disease. Here, we isolated cervical lymph node (LN) cells from MERS-CoV convalescent llamas and pulsed them with two different viral strains (clades B and C).
View Article and Find Full Text PDFThe SARS-CoV-2 pandemic made evident that there are only a few drugs against coronavirus. Here we aimed to identify a cost-effective antiviral with broad spectrum activity and high safety profile. Starting from a list of 116 drug candidates, we used molecular modelling tools to rank the 44 most promising inhibitors.
View Article and Find Full Text PDFMiddle East respiratory syndrome coronavirus (MERS-CoV) clade B viruses are found in camelids and humans in the Middle East, but clade C viruses are not. We provide experimental evidence for extended shedding of MERS-CoV clade B viruses in llamas, which might explain why they outcompete clade C strains in the Arabian Peninsula.
View Article and Find Full Text PDFCurrent COVID-19 vaccines have been associated with a decline in infection rates, prevention of severe disease, and a decrease in mortality rates. However, SARS-CoV-2 variants are continuously evolving, and development of new accessible COVID-19 vaccines is essential to mitigate the pandemic. Here, we present data on preclinical studies in mice of a receptor-binding domain (RBD)-based recombinant protein vaccine (PHH-1V) consisting of an RBD fusion heterodimer comprising the B.
View Article and Find Full Text PDF: Current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are administered systemically and typically result in poor immunogenicity at the mucosa. As a result, vaccination is unable to reduce viral shedding and transmission, ultimately failing to prevent infection. One possible solution is that of boosting a systemic vaccine via the nasal route resulting in mucosal immunity.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic in humans, is able to infect several domestic, captive and wildlife animal species. Since reverse zoonotic transmission to pets has been demonstrated, it is crucial to determine their role in the epidemiology of the disease to prevent further spillover events and major spread of SARS-CoV-2. In the present study, we determined the presence of virus and the seroprevalence to SARS-CoV-2, as well as the levels of neutralizing antibodies (nAbs) against several variants of concern (VOCs) in pets (cats, dogs and ferrets) and stray cats from North-Eastern of Spain.
View Article and Find Full Text PDFA wide range of animal species are susceptible to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Natural and/or experimental infections have been reported in pet, zoo, farmed and wild animals. Interestingly, some SARS-CoV-2 variants, such as B.
View Article and Find Full Text PDFMiddle East respiratory syndrome coronavirus (MERS-CoV) poses a serious threat to public health. Here, we established an ex vivo alpaca tracheal explant (ATE) model using an air-liquid interface culture system to gain insights into MERS-CoV infection in the camelid lower respiratory tract. ATE can be infected by MERS-CoV, being 10 TCID/mL the minimum viral dosage required to establish a productive infection.
View Article and Find Full Text PDF