Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and noncatalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity.
View Article and Find Full Text PDFAberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and di-methylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and non-catalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity.
View Article and Find Full Text PDFAberrant expression of EZH2, the main catalytic subunit of PRC2, has been implicated in numerous cancers, including leukemia, breast, and prostate. Recent studies have highlighted non-catalytic oncogenic functions of EZH2, which EZH2 catalytic inhibitors cannot attenuate. Therefore, proteolysis-targeting chimera (PROTAC) degraders have been explored as an alternative therapeutic approach to suppress both canonical and non-canonical oncogenic activity.
View Article and Find Full Text PDFCurrent amyloid beta-targeting approaches for Alzheimer's disease (AD) therapeutics only slow cognitive decline for small numbers of patients. This limited efficacy exists because AD is a multifactorial disease whose pathological mechanism(s) and diagnostic biomarkers are largely unknown. Here we report a new mechanism of AD pathogenesis in which the histone methyltransferase G9a noncanonically regulates translation of a hippocampal proteome that defines the proteopathic nature of AD.
View Article and Find Full Text PDFCurr Opin Chem Biol
October 2023
Over the last several decades, there has been continued interest in developing novel therapeutic approaches targeting protein lysine methyltransferases (PKMTs). Along with PKMT inhibitors, targeted protein degradation (TPD) has emerged as a promising strategy to attenuate aberrant PKMT activity. Particularly, proteolysis targeting chimeras (PROTACs) effectively eliminate PKMTs of interest, suppressing all enzymatic and non-enzymatic functions.
View Article and Find Full Text PDFLactate dehydrogenase (LDH) is a key glycolytic enzyme and biomarker of aggressive cancers. LDHA and LDHB are two main LDH subunits, and both are frequently overexpressed in tumors and essential for tumor growth. A number of LDHA/B small-molecule inhibitors have been developed.
View Article and Find Full Text PDFThe highly homologous protein lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in various human diseases. To investigate functions of G9a and GLP in human diseases, we and others reported several noncovalent reversible small-molecule inhibitors of G9a and GLP. Here, we report the discovery of the first-in-class G9a/GLP covalent irreversible inhibitors, and (MS8511), by targeting a cysteine residue at the substrate binding site.
View Article and Find Full Text PDFProteolysis targeting chimeras (PROTACs) represent a new class of promising therapeutic modalities. PROTACs hijack E3 ligases and the ubiquitin-proteasome system (UPS), leading to selective degradation of the target proteins. However, only a very limited number of E3 ligases have been leveraged to generate effective PROTACs.
View Article and Find Full Text PDF