Publications by authors named "Julia Vandermeer"

Bats are the only mammals capable of powered flight, but little is known about the genetic determinants that shape their wings. Here we generated a genome for Miniopterus natalensis and performed RNA-seq and ChIP-seq (H3K27ac and H3K27me3) analyses on its developing forelimb and hindlimb autopods at sequential embryonic stages to decipher the molecular events that underlie bat wing development. Over 7,000 genes and several long noncoding RNAs, including Tbx5-as1 and Hottip, were differentially expressed between forelimb and hindlimb, and across different stages.

View Article and Find Full Text PDF

The molecular events leading to the development of the bat wing remain largely unknown, and are thought to be caused, in part, by changes in gene expression during limb development. These expression changes could be instigated by variations in gene regulatory enhancers. Here, we used a comparative genomics approach to identify regions that evolved rapidly in the bat ancestor, but are highly conserved in other vertebrates.

View Article and Find Full Text PDF

Many folate-related genes have been investigated for possible causal roles in neural tube defects (NTDs) and oral clefts. However, no previous reports have examined the major gene responsible for folate uptake, the proton-coupled folate transporter (SLC46A1). We tested for association between these birth defects and single nucleotide polymorphisms in the SLC46A1 gene.

View Article and Find Full Text PDF

Nonsense mutations in FGF16 have recently been linked to X-linked recessive hand malformations with fusion between the fourth and the fifth metacarpals and hypoplasia of the fifth digit (MF4; MIM#309630). The purpose of this study was to perform careful clinical phenotyping and to define molecular mechanisms behind X-linked recessive MF4 in three unrelated families. We performed whole-exome sequencing, and identified three novel mutations in FGF16.

View Article and Find Full Text PDF

The limb is widely used as a model developmental system and changes to gene expression patterns in its signaling centers, notably the zone of polarizing activity (ZPA) and the apical ectodermal ridge (AER), are known to cause limb malformations and evolutionary differences in limb morphology. Although several genes that define these limb signaling centers have been described, the identification of regulatory elements that are active within these centers has been limited. By dissecting mouse E11.

View Article and Find Full Text PDF

Point mutations in the zone of polarizing activity regulatory sequence (ZRS) are known to cause human limb malformations. Although most mutations cause preaxial polydactyly (PPD), triphalangeal thumb (TPT) or both, a mutation in position 404 of the ZRS causes more severe Werner mesomelic syndrome (WMS) for which malformations include the distal arm or leg bones in addition to the hands and/or feet. Of more than 15 reported families with ZRS mutations, only one homozygous individual has been reported, with no change in phenotype compared with heterozygotes.

View Article and Find Full Text PDF

The identification of homologies, whether morphological, molecular, or genetic, is fundamental to our understanding of common biological principles. Homologies bridging the great divide between deuterostomes and protostomes have served as the basis for current models of animal evolution and development. It is now appreciated that these two clades share a common developmental toolkit consisting of conserved transcription factors and signaling pathways.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.

View Article and Find Full Text PDF

Limb malformations are one of the most common types of human congenital malformations. Mutations in the ZRS enhancer of Sonic Hedgehog are thought to be responsible for pre-axial polydactyly in multiple independent families. Here, we describe a large Balochi tribal family from Southern Punjab, Pakistan, with a variable set of limb malformations and a novel ZRS mutation.

View Article and Find Full Text PDF

Mutations in the Sonic hedgehog limb enhancer, the zone of polarizing activity regulatory sequence (ZRS, located within the gene LMBR1), commonly called the ZRS), cause limb malformations. In humans, three classes of mutations have been proposed based on the limb phenotype; single base changes throughout the region cause preaxial polydactyly (PPD), single base changes at one specific site cause Werner mesomelic syndrome, and large duplications cause polysyndactyly. This study presents a novel mutation-a small insertion.

View Article and Find Full Text PDF

The underlying mutations that cause human limb malformations are often difficult to determine, particularly for limb malformations that occur as isolated traits. Evidence from a variety of studies shows that cis-regulatory mutations, specifically in enhancers, can lead to some of these isolated limb malformations. Here, we provide a review of human limb malformations that have been shown to be caused by enhancer mutations and propose that cis-regulatory mutations will continue to be identified as the cause of additional human malformations as our understanding of regulatory sequences improves.

View Article and Find Full Text PDF

Individual studies of the genetics of neural tube defects (NTDs) contain results on a small number of genes in each report. To identify genetic risk factors for NTDs, we evaluated potentially functional single nucleotide polymorphisms (SNPs) that are biologically plausible risk factors for NTDs but that have never been investigated for an association with NTDs, examined SNPs that previously showed no association with NTDs in published studies, and tried to confirm previously reported associations in folate-related and non-folate-related genes. We investigated 64 SNPs in 34 genes for association with spina bifida in up to 558 case families (520 cases, 507 mothers, 457 fathers) and 994 controls in Ireland.

View Article and Find Full Text PDF