Publications by authors named "Julia V Bugrysheva"

Current antimicrobial treatment recommendations for melioidosis, the disease caused by , are largely based on studies of strains isolated from the Eastern Hemisphere (EH), where most human cases are identified and reported. In this study, we evaluated the antimicrobial susceptibility of 26 strains in the CDC (Centers for Diseases Control and Prevention) collection from the Western Hemisphere (WH) isolated from 1960 to 2015. Minimal inhibitory concentration (MIC) values were measured by standard broth microdilution for 16 antimicrobials following Clinical and Laboratory Standards Institute (CLSI) guidelines.

View Article and Find Full Text PDF

Human anthrax cases necessitate rapid response. We completed Bacillus anthracis nanopore whole-genome sequencing in our high-containment laboratory from a human anthrax isolate hours after receipt. The de novo assembled genome showed no evidence of known antimicrobial resistance genes or introduced plasmid(s).

View Article and Find Full Text PDF

Infections with tick-transmitted Borreliella (Borrelia) burgdorferi, the cause of Lyme disease, represent an increasingly large public health problem in North America and Europe. The ability of these spirochetes to maintain themselves for extended periods of time in their tick vectors and vertebrate reservoirs is crucial for continuance of the enzootic cycle as well as for the increasing exposure of humans to them. The stringent response mediated by the alarmone (p)ppGpp has been determined to be a master regulator in B.

View Article and Find Full Text PDF

Bp1651 is resistant to several classes of antibiotics that are usually effective for treatment of melioidosis, including tetracyclines, sulfonamides, and β-lactams such as penicillins (amoxicillin-clavulanic acid), cephalosporins (ceftazidime), and carbapenems (imipenem and meropenem). We sequenced, assembled, and annotated the Bp1651 genome and analyzed the sequence using comparative genomic analyses with susceptible strains, keyword searches of the annotation, publicly available antimicrobial resistance prediction tools, and published reports. More than 100 genes in the Bp1651 sequence were identified as potentially contributing to antimicrobial resistance.

View Article and Find Full Text PDF

We report here the complete annotated genome sequence of the Burkholderia stabilis type strain ATCC BAA-67. There were three circular chromosomes with a combined size of 8,527,947 bp and G+C composition of 66.4%.

View Article and Find Full Text PDF

Rapid methods to determine antimicrobial susceptibility would assist in the timely distribution of effective treatment or postexposure prophylaxis in the aftermath of the release of bacterial biothreat agents such as Bacillus anthracis, Yersinia pestis, or Burkholderia pseudomallei Conventional susceptibility tests require 16 to 48 h of incubation, depending on the bacterial species. We evaluated a method that is based on laser light scattering technology that measures cell density in real time. We determined that it has the ability to rapidly differentiate between growth (resistant) and no growth (susceptible) of several bacterial threat agents in the presence of clinically relevant antimicrobials.

View Article and Find Full Text PDF

Burkholderia pseudomallei strain Bp1651, a human isolate, is resistant to all clinically relevant antibiotics. We report here on the finished genome sequence assembly and annotation of the two chromosomes of this strain. This genome sequence may assist in understanding the mechanisms of antimicrobial resistance for this pathogenic species.

View Article and Find Full Text PDF

The bacterial stringent response is triggered by deficiencies of available nutrients and other environmental stresses. It is mediated by 5'-triphosphate-guanosine-3'-diphosphate and 5'-diphosphate-guanosine-3'-diphosphate (collectively (p)ppGpp) and generates global changes in gene expression and metabolism that enable bacteria to adapt to and survive these challenges. Borrelia burgdorferi encounters multiple stressors in its cycling between ticks and mammals that could trigger the stringent response.

View Article and Find Full Text PDF

Group A streptococcus (GAS) is a Gram-positive bacterium, which can cause multiple types of disease from mild infections of skin and throat to invasive and life-threatening infections. Recently RNase J1 and J2 were found to be essential for the growth of GAS. In order to identify inhibitors against RNase J1/J2, homology models of both the ligand-free apo-form and the ligand-bound holo-form complexes were constructed as templates for high-throughput virtual screening (HTVS).

View Article and Find Full Text PDF

Selection of possible targets for vaccine and drug development requires an understanding of the physiology of bacterial pathogens, for which the ability to manipulate expression of essential genes is critical. For Streptococcus pyogenes (the group A streptococcus [GAS]), an important human pathogen, the lack of genetic tools for such studies has seriously hampered research. To address this problem, we characterized variants of the inducible Ptet cassette, in both sense and antisense contexts, as tools to regulate transcription from GAS genes.

View Article and Find Full Text PDF

Background: Borrelia burgdorferi contains one 16S and two tandem sets of 23S-5S ribosomal (r) RNA genes whose patterns of transcription and regulation are unknown but are likely to be critical for survival and persistence in its hosts.

Results: RT-PCR of B. burgdorferi N40 and B31 revealed three rRNA region transcripts: 16S rRNA-alanine transfer RNA (tRNA Ala); tRNA Ile; and both sets of 23S-5S rRNA.

View Article and Find Full Text PDF

Differential mRNA stability is an important mechanism for regulation of virulence factors in Streptococcus pyogenes (group A streptococcus, GAS), a serious and prevalent human pathogen. We have described 2 Classes of mRNA in GAS that are distinguishable by 1) stability in the stationary phase of growth, 2) kinetics of decay in exponential phase, and 3) effect of depletion of RNases J1 and J2 and polynucleotide phosphorylase (PNPase) on decay in exponential phase. We discuss features of the structure of an mRNA that appear to be important for determining the Class to which it belongs and present a model to explain differential mRNA decay.

View Article and Find Full Text PDF

The paralogous ribonucleases J1 and J2, recently identified in Bacillus subtilis, have both endoribonucleolytic and 5'-to-3' exoribonucleolytic activities and participate in degradation and regulatory processing of mRNA. RNases J1 and J2 have partially overlapping target specificities, but only RNase J1 is essential for B. subtilis growth.

View Article and Find Full Text PDF

The impressive disease spectrum of Streptococcus pyogenes (the group A streptococcus [GAS]) is believed to be determined by its ability to modify gene expression in response to environmental stimuli. Virulence gene expression is controlled tightly by several different transcriptional regulators in this organism. In addition, expression of most, if not all, GAS genes is determined by a global mechanism dependent on growth phase.

View Article and Find Full Text PDF

The global transcriptional regulator (p)ppGpp (guanosine-3'-diphosphate-5'-triphosphate and guanosine-3',5'-bisphosphate, collectively) produced by the relA and spoT genes in Escherichia coli allows bacteria to adapt to different environmental stresses. The genome of Borrelia burgdorferi encodes a single chromosomal rel gene (BB0198) (B. burgdorferi rel [rel(Bbu)]) homologous to relA and spoT of E.

View Article and Find Full Text PDF

Extension of molecular genetics studies in Borrelia burgdorferi has been hampered by a lack of a variety of antibiotic resistance selective markers. Such markers are critical for isolation of B. burgdorferi strains with multiple mutants, for complementation with different cloning vectors, and for methods such as negative selection and reporter genes.

View Article and Find Full Text PDF