Publications by authors named "Julia Steinhoff"

Vitamin A (retinol) is distributed via the blood bound to its specific carrier protein, retinol-binding protein 4 (RBP4). Retinol-loaded RBP4 is secreted into the circulation exclusively from hepatocytes, thereby mobilizing hepatic retinoid stores that represent the major vitamin A reserves in the body. The relevance of extrahepatic retinoid stores for circulating retinol and RBP4 levels that are usually kept within narrow physiological limits is unknown.

View Article and Find Full Text PDF

Hepatocytes secrete retinol-binding protein 4 (RBP4) into circulation, thereby mobilizing vitamin A from the liver to provide retinol for extrahepatic tissues. Obesity and insulin resistance are associated with elevated RBP4 levels in the blood. However, in a previous study, we observed that chronically increased RBP4 by forced Rbp4 expression in the liver does not impair glucose homeostasis in mice.

View Article and Find Full Text PDF

The tumor suppressor p53 is involved in the adaptation of hepatic metabolism to nutrient availability. Acute deletion of p53 in the mouse liver affects hepatic glucose and triglyceride metabolism. However, long-term adaptations upon the loss of hepatic p53 and its transcriptional regulators are unknown.

View Article and Find Full Text PDF

Retinol binding protein 4 (RBP4) is the specific transport protein of the lipophilic vitamin A, retinol, in blood. Circulating RBP4 originates from the liver. It is secreted by hepatocytes after it has been loaded with retinol and binding to transthyretin (TTR).

View Article and Find Full Text PDF

Aims: Heart failure (HF) is characterized by an overactivation of β-adrenergic signalling that directly contributes to impairment of myocardial function. Moreover, β-adrenergic overactivation induces adipose tissue lipolysis, which may further worsen the development of HF. Recently, we demonstrated that adipose tissue-specific deletion of adipose triglyceride lipase (ATGL) prevents pressure-mediated HF in mice.

View Article and Find Full Text PDF

Retinol binding protein 4 (RBP4) is a member of the lipocalin family and the major transport protein of the hydrophobic molecule retinol, also known as vitamin A, in the circulation. Expression of RBP4 is highest in the liver, where most of the body's vitamin A reserves are stored as retinyl esters. For the mobilization of vitamin A from the liver, retinyl esters are hydrolyzed to retinol, which then binds to RBP4 in the hepatocyte.

View Article and Find Full Text PDF

We compare a new simplified (2)H enrichment mass isotopomer analysis (MIA) against the laborious hexamethylentetramine (HMT) method to quantify the contribution of gluconeogenesis (GNG) to total glucose production (GP) in calves. Both methods are based on the (2)H labeling of glucose after in vivo administration of deuterium oxide. The (2)H enrichments of plasma glucose at different C-H positions were measured as aldonitrile pentaacetate (AAc) and methyloxime-trimethylsilyl (MoxTMS) derivatives or HMT by gas chromatography/mass spectrometry (GC/MS).

View Article and Find Full Text PDF